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ABSTRACT

When rodents learn to navigate in a novel environment, a high density of place
fields emerge at reward locations, fields elongate against the trajectory, and indi-
vidual fields change spatial selectivity while demonstrating stable behavior. Why
place fields demonstrate these characteristic phenomena during learning remains
elusive. We develop a normative framework using a reward maximization objec-
tive, whereby the temporal difference (TD) error drives place field reorganization
to improve policy learning. Place fields are modelled using Gaussian radial ba-
sis functions to represent states in an environment, and directly synapse to an
actor-critic for policy learning. Each field’s amplitude, center and width, as well
as downstream weights, are updated online at each time step to maximize cu-
mulative reward. We demonstrate that this framework unifies the three disparate
phenomena observed in navigation experiments. Furthermore, we show that these
place field phenomena improves policy convergence when learning to navigate
to a single target and relearning multiple new targets. To conclude, we develop
a normative model that recapitulates several aspects of hippocampal place field
learning dynamics and unifies mechanisms to offer testable predictions for future
experiments.

1 INTRODUCTION

A place field is canonically described as a localized region in an environment where the firing rate of
a hippocampal neuron is maximal and robust across trials (O’Keefe, 1978; O’Keefe & Dostrovsky,
1971). Classically, each neuron has a unique spatial receptive field such that the population activity
can describe an animal’s allocentric position within the environment (Moser et al., 2015). Ablation
studies demonstrate that the hippocampal representation is useful for learning to navigate to new
targets (Morris et al., 1982; Packard & McGaugh, 1996; Steele & Morris, 1999). Importantly, each
field’s spatial selectivity evolves with eperience in a new environment before stabilizing in the later
stages of learning (Frank et al., 2004). Specifically, a high density of place fields emerge at reward
locations (Gauthier & Tank, 2018; Lee et al., 2020; Sosa et al., 2023), place fields elongate backward
against the trajectory (Mehta et al., 1997; Priestley et al., 2022), and individual place field’s spatial
selectivity continues to change or “drift” even when animals demonstrate stable behavior (Geva
et al., 2023; Kentros et al., 2004; Krishnan & Sheffield, 2023; Mankin et al., 2012; Ziv et al., 2013).
Although disparate mechanisms have been proposed to model these phenomena, a framework that
can unify their phenomena and clarify their computational role remains elusive.

Here, we propose a normative model for spatial representation learning in hippocamppal CA1, given
its role in representing salient spatial information (Dong et al., 2021; Dupret et al., 2010). Our
primary contributions are as follows:

• We develop a two-layered reinforcement learning model to study spatial representation learning
by place fields (Fig.1A). The first layer contains a population of Gaussian radial basis functions
that transform continuous spatial information into a relevant representational substrate, which
feed into the actor-critic network in the second layer that uses these representations to maximize
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cumulative discounted reward. Besides the actor and critic weights, each place field’s firing rate,
center of mass and width is optimized by the temporal difference error.

• Our model recapitulates three experimentally-observed neural phenomena during task learning:
the emergence of high place field density at rewards, elongation of fields against the trajectory,
and drifting fields that do not affect task performance.

• We analyze the factors that influence these representational changes: a low number of fields drives
greater spatial representation learning, each place field’s firing rate reflects the value of that loca-
tion, and increasing noise magnitude during field parameter updates causes a monotonic decrease
in population vector correlation but non-monotonic change in behavior.

• We demonstrate that optimizing place field widths and amplitudes enhances reward maximization
and policy convergence. However, field parameter optimization alone is insufficient for learning to
navigate to new targets. Introducing noisy field parameter updates improves new target learning,
suggesting a functional role for noise.

2 RELATED WORKS

Anatomically constrained architecture for navigation. Learning to navigate involves the hip-
pocampus encoding spatial information and its strong glutamatergic connections to the striatum
(Floresco et al., 2001; Lisman & Grace, 2005). The ventral and dorsal regions of the striatum are
associated with value estimation and stimulus-response associations, functioning similarly to a critic
and an actor, respectively (Houk et al., 1994; Joel et al., 2002; Niv, 2009). Additionally, dopamine
neurons in the Ventral Tegmental Area influence plasticity in the striatal synapses (Reynolds et al.,
2001; Russo & Nestler, 2013). This anatomical insight has led to the design of a biologically plausi-
ble navigation model, where place fields connect directly to an actor-critic framework, and synapses
are modulated by the TD error (Arleo & Gerstner, 2000; Brown & Sharp, 1995; Foster et al., 2000;
Frémaux et al., 2013; Kumar et al., 2022). Furthermore, recent evidence shows direct dopaminergic
projections to the hippocampus to modulate place cell activity, strengthening the case for navigation
models with adaptive place fields (Kempadoo et al., 2016; Krishnan et al., 2022; Palacios-Filardo &
Mellor, 2019; Sayegh et al., 2024). How upstream information from the entorhinal cortex influences
place field representations for policy learning needs clarity (Bush et al., 2015; Fiete et al., 2008).

Field density increases near reward locations. As animals learn to navigate in a 1D track, a high
density of place fields emerge at reward locations. We define density to be both the number of fields
(Gauthier & Tank, 2018; Sosa et al., 2023) and the peak firing rate of each field (Lee et al., 2020).
Reward location based reorganization was observed in hippocampal CA1 and not in CA3 (Dupret
et al., 2010).

Fields learn to encode future occupancy. As animals traverse a 1D track towards a reward, most
CA1 fields increase in size and their center of mass shift backwards against the trajectory of motion
(Frank et al., 2004; Mehta et al., 1997; Priestley et al., 2022). A proposal for this behavior is that
fields initially encoding only location xt are learning to also encode the previous location xt−1, and
hence are coding future location occupancy p(xt+1|xt) (Mehta et al., 2000; Stachenfeld et al., 2017).
While algorithms such as the successor representation (Dayan, 1993) learn to predict the transition
structure (Gardner et al., 2018; Gershman, 2018), the representation is dependent on a predefined
navigation policy. Hence, a complete normative argument—including policy learning—for why
fields exhibit this behavior is still lacking.

Fields drift during stable behavior. After animals reach a certain performance criterion in nav-
igating to a reward location, the spatial selectivity of individual place fields changes across days,
even though animals exhibit stable behavior (Geva et al., 2023; Kentros et al., 2004; Mankin et al.,
2012; Ziv et al., 2013). A proposal is that these fields continue to drift within a degenerate solution
space while the overall representational manifold or the chosen performance metric remains stable
(Kappel et al., 2015; Masset et al., 2022; Pashakhanloo & Koulakov, 2023; Qin et al., 2023; Rokni
et al., 2007). However, a model that demonstrates stable navigation learning behavior with drifting
fields is absent. Furthermore, why drifting fields might be useful is still unexplored.

Place fields versus place cells. Several experiments have shown that place fields along the dorso-
ventral axis have different widths (Jung et al., 1994) and are also involved in navigation (Contreras
et al., 2018; Harland et al., 2021), while newer experiments challenge the canonical definition that
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a place cell only has one place field (Eliav et al., 2021). As a simple starting point, in this work we
study spatial representational learning using Gaussian place fields, instead of place cells.

3 TASK AND MODEL SETUP

Most navigational experiments involve an animal moving from a start location to a target location to
receive a reward, either in a one-dimensional (1D) track or a two-dimensional (2D) arena. Similarly,
our agents receive their true position at every time step (t) described by the variable (scalar xt in 1D,
vector xt in 2D), and has to learn a policy (π) that specifies the actions to take (gt) to move from a
start location (e.g. xstart = −0.75, Fig. 1A green dash) to a target with reward values following
a Gaussian distribution (xr = 0.5, σr = 0.05, Fig. 1A red area). The agent outputs a discrete
one-hot vector gt (left versus right in 1D and left, right, up or down in 2D), which is converted to a
displacement metric (-0.1 versus 0.1 in a specific dimension of the environment) by the function f :

xt+1 = (1− αenv)xt + αenvf(gt) . (1)

The agent’s transition in the environment is smooth as we use a low-pass filter using a constant
αenv = 0.2, similar to (Foster et al., 2000; Frémaux et al., 2013; Kumar et al., 2022; 2024b; Zannone
et al., 2018). To determine an agent’s reward maximization performance during navigational learn-
ing we track the true cumulative discounted reward (G =

∑T
t=0 γ

trt+1) for each trial using γ = 0.9

as the discount factor and T is the end of the trial when t = Tmax or when
∑Tmax

t=0 rt+1 ≥ Rmax.
For further details, see App. A.

3.1 PLACE FIELDS AS SPATIAL FEATURES

The agent represents space through N place fields, which have spatial selectivity modeled as simple
Gaussian bumps and tile the environment:

ϕi(xt) = α2
i exp

(
−||xt − λi||22

2σ2
i

)
, (2)

with α, λ and σ set the amplitude, center, and width respectively. In most simulations, the amplitudes
were initialized either as constant values αi = 0.5 or drawn from a uniform random distribution
between [0,0.5]. The widths σi = 0.1 were chosen to be consistent with experimental data where
place fields were 20 cm to 50 cm wide (Frank et al., 2004; Lee et al., 2020; Mehta et al., 1997;
Sosa et al., 2023), with the centers uniformly tiling the environment λ = [−1, ..., 1] (Frémaux et al.,
2013; Kumar et al., 2022; Zannone et al., 2018). A 2D place field has a scalar amplitude, a two
dimensional vector for center, and a square covariance matrix for the width as in Menache et al.
(2005). Refer to App. A for details.

3.2 POLICY LEARNING USING AN ACTOR-CRITIC

To model an animal’s trial-and-error based learning behavior, we adopt the reinforcement learning
framework, specifically the actor-critic (Arleo & Gerstner, 2000; Brown & Sharp, 1995; Foster et al.,
2000; Frémaux et al., 2013; Kumar et al., 2022; 2024b). The critic linearly weighs place field activity
using a vector wvi to estimate the value of the current location

v(xt) =
∑N
i w

v
i ϕi(xt) . (3)

The value of a location corresponds to the expected cumulative discounted reward for that location.
The actor has M units, each specifying a movement direction. In the 1D and 2D environments,
M = 2 and M = 4 respectively to code for opposing directions in each dimension e.g. left versus
right and up versus down. Each actor unit aj linearly weighs the place field activity such that the
matrix Wπ

ji computes the preference for moving in the jth direction

aj(xt) =
∑N
i W

π
jiϕi(xt) , Pj =

exp(aj)∑M
k exp(ak)

, (4)

with the probability of taking an action computed using a softmax. A one-hot vector gj is sampled
from the action probability distribution P as in Foster et al. (2000), making this policy stochastic.
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3.3 BIOLOGICALLY RELEVANT REWARD MAXIMIZATION LEARNING OBJECTIVE

The objective of our agent is to maximize the expected cumulative discounted reward JG =

E[Gt] = E[
∑T
k=0 γ

krt+1+k]. To achieve this goal in an online manner, our agent uses the stan-
dard actor-critic algorithm using the expected temporal difference objective (refer to App. A):

J TD = E [rt+1 + γv(xt+1)− v(xt)] = E[δt] . (5)

which reduces variance and speeds up policy convergence (Dayan & Abbott, 2005; Mnih et al., 2016;
Schulman et al., 2017; Sutton & Barto, 2018; Wang et al., 2018). The TD error is also biologically
relevant, as the responses of midbrain dopamine neurons resemble TD reward prediction error (Amo
et al., 2022; Gershman & Uchida, 2019; Montague et al., 1996; Schultz et al., 1997; Starkweather
& Uchida, 2021).

The actor learns a reward maximizing policy by ascending the gradient of the policy log likelihood,
modulated by the TD error. To accurately estimate the TD error and critique policy learning, the
critic learns a value function by minimizing the squared TD error L = E

[∑T
t=0

1
2δ

2
t

]
.

Given that our agent uses a single population of place fields, these fields must learn spatial features
that enhance both policy and value learning. The place field parameters, collectively denoted as
θ = {α, λ, σ} and Wπ , wv are updated by gradient ascent using a joint objective modified from
Wang et al. (2018):

∇θ,Wπ,wvJ = ∇θ,WπJ TD −∇θ,wvL = E
[∑T

t (∇θ,Wπ log π(gt|xt) +∇θ,wvv(xt)) · δt
]
, (6)

with ∇wvJ TD = 0 and ∇WπL = 0. We estimate all parameter gradients online, and provide
the explicit update equations for each parameter in App. A. We assume a separation of timescales
between learning the actor-critic weights and updating place field parameters with the learning rate
for actor-critic weights being 100 times higher than that for place field parameters (see App. A for
details). This approach stabilizes place field representation learning, and is consistent with Dong
et al. (2021)’s observation that rodent behavior converges faster than place field representations.

4 RESULTS

4.1 A HIGH DENSITY OF FIELDS EMERGES NEAR THE REWARD LOCATION

We first examine the neural phenomenon where a high density of place fields emerges at the reward
location. We define density as the mean firing rate at a specific location, d(x) = 1

N

∑N
i ϕi(x).

Figure 1B shows how our Reward Maximizing (RM) agent’s proportion of time spent at a location
or track occupancy averaged over 50 trials (pRM (x), black), field density (dϕ(x), red) and individual
field’s spatial selectivity (ϕ(x), bottom row) changes when learning to navigate in a 1D track from
the start location xstart = −0.75 to the target at xr = 0.5.

In the early stages of learning, the agent spends a higher proportion of time at the start location
with sporadic exploration towards the reward. Despite this behavior, a high field density rapidly
emerges from a uniformly initialized field population within the first few trials, seen in (Lee et al.,
2020). Individual fields at the reward location are quickly amplified (Fig. 1E) and shift closer to the
target (Fig. 1F), as seen in (Gauthier & Tank, 2018; Sosa et al., 2023), in contrast to fields at non-
rewarded locations. As learning progresses (T = 5000 to T = 50000) and the agent spends a higher
proportion of time at the reward location, field density at the start location also begins to rise slightly,
although it remains lower than at the reward location, replicating the two-peaked field distribution in
(Gauthier & Tank, 2018). Similar field dynamics are observed in a 2D arena with an obstacle where
agents have to navigate to a target from a random starting location (Fig. 1C). Initially, a high field
density emerges at the reward location. This is followed by a gradual reorganization of field density
along the agent’s trajectory back to the three start locations.

Interestingly, increasing the number of fields reduces the field density that emerges at the reward
location (Fig. 1D). This could be because as the number of fields increase, the agent goes into a weak
feature learning regime in which feature learning does not contribute to additional advantage. This
behavior is consistent with different place field widths σ = {0.025, 0.05, 0.1}. While experiments
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Figure 1: Emergence of high field density at the reward location with learning. (A) The task is
to navigate from the start (green dash) to the target (red area) to receive rewards whose magnitude
follows a Gaussian distribution. The agent contains N Gaussian basis functions to represent place
field-like firing rates (blue) which synapse to an actor (red) and critic (green) to learn the policy
and value function respectively. Each place field’s parameters, actor and critic synapses are updated
at every time step using the Temporal Difference error. (B-C) Example of an increase in place
field density (mean firing rate) at the reward location when each field’s amplitude and center is
optimized during learning in a (B) 1D track (Gauthier & Tank, 2018; Lee et al., 2020), and (C) 2D
arena with an obstacle (grey). (B) (Top row) In the early learning phase (T = 1000), the agent
spends a high proportion of time (pRM (x), black) at the start location while a high field density
emerges at the target (dϕ(x), red). As learning proceeds (T = 5000, 50000), the agent spends
a higher proportion of time at the target and the field density aligns with the agent’s occupancy
in the track. (Bottom row) Evolution of individual place field’s (ϕ(x)) amplitude and centers are
visualized. (C) The density similarly evolves in the 2D arena where in the early learning phase, a
high field density emerges at the target, while the rest of the fields along the trajectory get amplified
as learning proceeds. The start and reward locations are visualized as green and red circles in the
leftmost plot. (D) As the number of fields an agent is initialized with increases, the field density at
the reward location xr decreases. The scaling is preserved even when the agent is initialized with
different field widths (σ = 0.025, 0.05, 0.1). The density decreases when the reward location’s size
increases (Rsize = 0.025, 0.05, 0.1). Each point is averaged over 50 seeds. (E) Example of field
amplitude dynamics when an agent (N = 512) navigates a 1D track. Fields closest to the reward e.g.
0.5 (green) and 0.6 (red) show a rapid and high amplification compared to the other fields at -0.75
(blue), 0.0 (orange). The first order perturbative prediction (theory) provides a good approximation
of learned amplitudes in both 1D and 2D tasks. (F) Fields initialized before and after the target, at
0.5 (blue) and 0.6 (orange), move forward and backward respectively causing a higher number of
fields to organize at the target.

can record thousands of place fields, only a small fraction of fields, between 80 to 150, show reward-
relative reorganization indicating that the hippocampus might be optimizing only a small number
of fields (Gauthier & Tank, 2018; Lee et al., 2020; Sosa et al., 2023). Conversely, the density
is inversely proportional to the reward location width as a narrower target might require higher
discriminability for the agent to maximize rewards.

To understand why place fields exhibit these dynamics, we perform a perturbative approximation to
the place field parameter changes under TD learning updates (Bordelon et al., 2024; Menache et al.,
2005). In this approximation, we assume that the change to the field parameters is small, controlled
by the number of fields and by the large separation between learning rates. Focusing on the field
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amplitudes, we derive in App. B the approximation:

αi(t)− αi(0) ≈ 2
ηα
η
w2
v,i(t) , ηα ≪ η , (7)

where ηα = 0.0001 is the learning rate for the α parameters and η = 0.01 is the learning rate
for the critic weights. We plot this approximation in Figure 1E. Under this approximation, each
field’s amplitude is directly proportional to the squared magnitude of the critic weights, implying
that fields at locations with a high value will be amplified at a rate similar to the agent learning the
value function. A similar perturbative analysis for place field centers reveals that in addition to the
value of a location, the agent’s start location (modeled as a Gaussian with mean µ̄x = −0.75 and
spread σx) and the mean field center location λ̄ over time under the policy influence each field’s
displacement:

λi(t)− λi(0) ≈
ηλ
η

(
2

σ2
i

+
1

σ2
x

)−1 [
λ̄− λi(0)

σ2
i

+
µ̄x − λi(0)

σ2
x

]
w2
v,i(t) , ηλ ≪ η , (8)

where ηλ is the learning rate for the field centers. This analysis suggests that fields will be influenced
by both the start location and locations where the agent dwells. In later learning phases, this will be
the reward location λ̄ = 0.5. As the term within the square bracket changes sign depending on the
field location, only the fields near the reward location will shift towards the reward, while the rest
of the fields will move towards the start location (Fig. 1F). Additional approximations are needed to
model the agent’s trajectory and improve the simulation-theory fit for place field centers (App. B).
4.2 REWARD MAXIMIZATION RESULTS IN FIELD ENLARGEMENT AGAINST MOVEMENT

We now turn to the next phenomenon where place field sizes increase and their centers shift back-
ward against the movement direction as animals learn to navigate. A proposed account for this
phenomenon is that place fields learn to encode future occupancy, that is, given a location xt, the
population of place fields represents the future occupancy probability p(xt+1|xt) (Stachenfeld et al.,
2017). Future occupancy can be learned through Hebbian association of fields that have a correlated
firing activity sequence (George et al., 2023; Mehta et al., 2000), or through the successor represen-
tation (SR) algorithm, whose objective is to minimize state prediction error by computing a temporal
difference error for each place field to learn the transition probabilities (Dayan, 1993; Gardner et al.,
2018). Both methods recapitulate field elongation in a 1D track.

Here, we show that place fields can demonstrate a similar elongation against the trajectory during
reward maximization. For comparison purposes, we developed an SR agent that learns the transition
probabilities in an environment in parallel to policy learning (Sup. Fig. 3A). The SR agent has a
similar architecture to our Reward Maximising (RM) agent (Fig. 1A), with two key differences: 1)
It has one set of place fields with fixed parameters, and only the synapses from these place fields
to the actor-critic are optimized for policy learning. 2) There is a separate set of N successor place
fields ψ(x) that receive input from the fixed place fields via a set of synapses U which are optimized
using the SR algorithm (App. C). We will compare the learned successor place fields to the learned
place fields in our RM model, following Stachenfeld et al. (2017). We will therefore henceforth
refer to the successor place fields simply as place fields.

Both SR and RM agents recapitulate the phenomena seen in (Mehta et al., 1997; Priestley et al.,
2022): on average, place fields increase in size over learning (Fig. 2A), and the center of mass
(COM) shifts backwards from their initialized positions (Fig. 2B, Sup. Fig. 3C). However, the place
fields of the SR and RM agents evolve differently. Both the SR and RM agents initially spend a high
proportion of time at the start location and gradually learn a policy to spend a higher proportion of
time at the reward location (Fig. 2C). The correlation between the SR and RM agents proportion of
time spent in a location is high, positively correlated in most trials (Fig. 2D), except for the decrease
between trial 5000 to 10,000 where the RM agent spends a higher proportion of time at the reward
location than the SR agent due to faster policy convergence (Sup. Fig. 3B).

The SR, by design, learns to track the transition probabilities associated with the agent’s policy.
Hence, individual SR field firing rate ψ(x) and SR field density dψ(x) closely aligns with the agent
probability of time spent in a location (Fig. 2C), such that the correlation between dψ(x) and pSR
is high and positive (Fig. 2D). Conversely, the RM agent learns high individual firing rate ϕ(x) and
field density dϕ(x) at the reward location during the early learning phase (Fig. 2C), starkly differing
from the agent’s proportion of time spent in a location (Fig. 2C), causing the dϕ(x) and pRM
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Figure 2: Learning to maximize reward predicts field enlargement against movement direction,
with distinct field dynamics from learning the successor representation. (A-B) Both Reward
Maximization (RM, orange) and Successor Representation (SR, blue) algorithms cause (A) field
sizes to increase and (B) field center of mass to shift backwards against the movement direction
when learning in a 1D track, replicating Mehta et al. (1997). Each line shows the average change
in an agent initialized with 16 place fields. Shaded area shows 95% CI over 10 different seeds.
The change in SR and RM fields were normalized separately to be between 0 to 1 for visualization.
(C) In the early learning phase (T = 1000), both the SR (top row) and RM (bottom row) agents
spend a high proportion of time at the start location (black), and learn a policy to spend a higher
proportion of time at the target in later phases (T = 10000, 50000). The individual SR fields
(colored) and SR density (red) closely track the proportion of time the agent spends in a location.
Conversely, the individual RM fields and density show an inverse relationship against the proportion
of time the RM agent spends at a location in the early learning phase, but start to align in the
later phases. (D) The proportion of time SR and RM agents spend at a location is high, positively
correlated (black). SR agents show a consistently high, positive correlation (blue) between field
density (dψ(x)) and proportion of time spent in a location (pSR(x)). Conversely, the correlation
between the RM agents’ field density (dϕ(x)) and time spent at a location (pRM (x)) becomes anti-
correlated (orange) before becoming positively correlated. Similarly, the SR and RM field densities
(red) become anti-correlated before becoming positively correlated at the later learning phase. (E)
The correlation between the individual field firing rates (ψi(x) vs ϕi(x), green) and the spatial
representation similarity matrices (ψ(x) ·ψ(x′) vs ϕ(x) ·ϕ(x′), purple) learned by the SR and RM
agents rapidly diverge in the early learning phase but stabilize and become positively correlated in
later phases. (E-F) Correlations averaged over 10 different seeds. (F) Example change in field size
and COM by SR (top row) and RM (bottom row) agents in a 2D arena with an obstacle. Summary
statistics in Supp Fig. 4. The RM agent’s field elongation and shift is more pronounced than the SR
agent, especially along the trajectory and rotation about the obstacle.

correlation to become highly negative (Fig. 2D). Interestingly, in the later phase of learning, dϕ(x)
and pRM become positively correlated. The densities learned by the SR and RM agents become
negatively correlated during the early learning phase but become positively correlated at the later
learning phase (Fig. 2D). A similar change in correlation is observed when comparing the individual
SR and RM field selectivity or population vectors (Fig. 2E), and the spatial representation similarity
matrix (Sup. Fig. 3D) by taking the dot product of SR and RM field firing rates at all locations (Fig.
2E). These demonstrate that both algorithms eventually learn similar spatial representations, but the
process of learning these representations are different.

Figure 2F shows an example of how SR and RM agents learn features in a 2D arena with an obstacle.
Both agents show elongation of fields against the agent’s direction of movement (Sup. Fig. 4) while
also accounting for the blockage of path by the obstacle. The RM agent shows a significantly larger
elongation of fields to span the entire corridor while the elongation of fields by SR is subtle.

4.3 STABLE NAVIGATION BEHAVIOR WITH DRIFTING FIELDS

The third phenomena that the model captures has been described as representational drift, where the
agent demonstrates stable navigation or reward maximization (G) behavior but the spatial selectivity
of individual place fields changes over time (Fig. 3A). One way to quantify drift is to measure the
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Figure 3: Stable behavior and representation similarity even when individual fields change
field selectivity. (A) Injecting Gaussian noise with magnitude σnoise = 0.0001 into field param-
eters causes individual field’s spatial selectivity to change across trials. (B) Injecting higher noise
magnitudes (σnoise = 0.0, 0.0001, 0.0005, 0.001) leads to a faster decrease in population vector
correlation (RPV ) from trial 25,000 to 200,000. (C) Agents’ reward maximization performance
(G) remains fairly stable when the noise magnitude increases. Beyond σnoise = 0.001, perfor-
mance becomes highly unstable. Black dash indicates the trial at which PV and similarity matrix
correlation was measured from. (D) The representation similarity matrix (dot product of population
activity from (A)) remains stable between trials. (E) With higher noise magnitudes, the similarity
matrix correlation (RRS) across trials decreases but at a slower rate than PV correlation. (F) Nor-
malized variance in field parameters (θ = {α, λ, σ}) between trials 25,000 to 200,000 quantifies
change in individual place fields spatial selectivity. With no noise (blue) or a larger noise magni-
tude (σnoise = 0.001), fields with a larger amplitude experiences a greater change in its parameters.
When σnoise ∈ {0.0001, 0.00025}, we see the opposite trend, where fields with a larger amplitude
are more stable than fields with a smaller amplitude, replicating Qin et al. (2023). Shaded area is
95% CI over 10 seeds.

population vector (PV) correlation across trials, which tracks individual field’s spatial selectivity
(RPV ). Although our agent uses a stochastic policy, both the navigation behavior after 25,000 trials
(Fig. 3C, blue) and the PV correlation are extremely stable (Fig. 3B, blue).

To drive larger variability in the place field representation, we introduced Gaussian noise of differ-
ent magnitudes (σnoise = [10−6, 10−1]) to each field’s amplitude, center and width at every time
step (App. D). Increasing the noise magnitude led to a faster decrease in PV correlation but also
disrupted agents’ policy convergence for magnitudes greater than 10−3 (Sup. Fig. 5). Hence, we
consider the noise magnitudes between 10−4 and 10−3. As the noise magnitude increases, agent’s
reward maximization behavior remains stable while the PV correlation decreases rapidly (Fig. 3B-
C). This demonstrates that agents can optimize their policies to maintain stable behavior even though
individual spatial selectivity is changing. Interestingly, the spatial representation similarity matrix
remains more stable than PV correlation (Fig. 3D), even with a higher noise magnitude (Fig. 3E),
although the agents are not explicitly optimizing for representational similarity (Qin et al., 2023).

We quantified this drifting behavior at the level of individual neurons by summing the normalized
(between [0, 1]) variance in each field’s parameters (

∑
V ar(θ̃) = V ar(α̃) + V ar(λ̃) + V ar(σ̃))

across learning trials, and comparing this against the mean amplitudes for each field. When no
Gaussian noise is added (Fig. 3F), fields with a higher mean amplitude showed a higher variance in
its parameters, which is expected since fields with a higher amplitude are more likely to be involved
in policy learning. Conversely, with a small Gaussian noise, we see the opposite trend where fields
with a smaller mean amplitude showed a higher variance in parameters while fields with a higher
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Figure 4: Field reorganization and noisy updates improve target learning. (A) Optimizing all
three field parameters, amplitude, width and center of randomly distributed fields allowed agents
(N = 16, σ = 0.1) to attain the highest cumulative discounted reward (G), while fields with fixed
field parameters attained the lowest. (B) Optimizing place field widths (σ), followed by field am-
plitudes (α) and lastly field centers (λ) caused the biggest decrease in the number of trials needed
for policy convergence (TG>45, attain a running average of G = 45 over 300 trials). As the number
of fields increased, the number of trials needed for policy convergence decreased and the computa-
tional advantage afforded by field optimization extinguished. (C) Agents need to navigate to a target
that changed after 50,000 trials xr = {0.5, 0.0, 0.75,−0.25, 0.5}. Without noisy field parameter up-
dates, agents (N = 128, σ = 0.1) struggled to learn new targets (blue, σnoise = 0.0). Field updates
with different noise magnitudes influenced the policy convergence speed and maximum cumulative
reward for subsequent targets, with σnoise = 0.0005 (red) demonstrating the highest improvement.
Shaded area is 95% CI over 50 seeds.

mean amplitude were more stable. At smaller noise magnitudes, there is a strong positive correlation
between higher amplitude fields and the magnitude of actor and critic weights (Sup. Fig. 6). This
suggests that high-amplitude fields are more involved in policy learning and thus need stability,
whereas less important fields can alter their spatial selectivity, consistent with Qin et al. (2023).

Unlike noisy field parameter updates, adding noise to the actor and critic synapses caused the agent’s
reward maximization behavior, representation similarity correlation and population vector correla-
tion to change at similar rates (Sup. Fig. 5). Hence, neural drifting phenomenon seems more likely
to be driven at the place field representation level rather than stochastic policies.

4.4 PLACE FIELD REORGANIZATION IMPROVES POLICY CONVERGENCE

As the reward-maximizing model recapitulates experimentally-observed changes in place fields, it
is natural to ask what computational advantage these representational changes might offer. To probe
the contributions of each field parameter to policy learning, we perform ablation experiments. These
ablations are particularly important due to the parameter degeneracies in the model: one can trade
off the place field amplitudes and the critic and actor weights.

We first considered the task of navigating to a single fixed target. Agents with fixed place fields at-
tained the lowest navigational performance with cumulative rewardG plateauing atG = 33 per trial
(Fig. 4A), and showed the slowest policy convergence even as the number of fields increased (Fig.
4B). Optimizing place field widths (σ) contributed to the greatest improvement in maximum reward
and largest decrease in the number of trials for policy convergence (Fig. 4A-B). Optimizing place
field amplitudes (α) contributed to the next-most significant improvement (Fig. 4A-B). Interestingly,
place field center (λ) optimization did not contribute to a significant improvement in performance,
and in fact caused a significant decrease in reward maximization performance and speed of policy
convergence when optimized together with the amplitude parameter. Hence, optimizing field widths
followed by amplitudes and lastly centers significantly improved agent’s reward maximization per-
formance and increased the speed of policy convergence. However, as the number of place fields
increase (Fig. 4B), the computational advantage afforded by place field optimization extinguishes.
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Nevertheless, optimizing all the parameters in a small number of fields, e.g. 8, leads to a similar rate
of policy convergence than with a larger number of randomly initialized fields e.g. 128, which hints
that representation flexibility could allow efficient learning in systems with few neurons.

We now turn to the influence of noisy fields when learning to navigate to new targets, inspired by
Dohare et al. (2024). With the same random field initialization, agents now have to navigate from
the same start location to a target that repeatedly changes location. Although all agents learned to
navigate to the first and the second targets equally well, agents without noisy field updates struggled
to learn the next three targets, and achieved a lower average cumulative reward (Figure 4C). Increas-
ing the noise magnitude led to a monotonic improvement in new target learning. However, noise
magnitudes beyond a threshold (σnoise = 0.001) caused average cumulative reward to decrease.
These results suggests that there is a functional role for noise, especially for new target learning. We
see a similar improvement in reward maximization performance with noisy field updates in a 2D
arena with an obstacle when we either change the target or the obstacle location (Sup. Fig. 9).

5 DISCUSSION

We present a two-layer navigation model which uses tunable place fields as feature inputs to an actor
and a critic for policy learning. The parameters of the place fields, the policy and value function are
optimized using the temporal difference (TD) error to maximize rewards. We demonstrate the model
recapitulates three-experimentally observed neural phenomena during task learning, specifically the
emergence of a high place field density at rewards, enlargement of fields against the trajectory, and
drifting fields without influencing task performance. We analyzed the model to understand how the
TD error, number of place fields and noise magnitudes influenced place field representations. Lastly,
we demonstrate that learning place field representations with noisy field parameters improves reward
maximization and the rate of policy convergence when learning single and multiple targets.

The proposed reinforcement learning model might be a sufficient toy model for theoretical analysis
(Bordelon et al., 2024) while remaining biologically grounded enough to make testable predictions
for neuroscience experiments (Kumar et al., 2024a). For instance, our model gives an alternative nor-
mative account for field elongation against the trajectory, which can be contrasted with the successor
representation algorithm (Kumar et al., 2024b; Raju et al., 2024). As the dynamics of fields are dif-
ferent in these two models, they could be distinguishable by experiments that track fields over the
full course of learning (Fig. 1C, 2C-E, Sup. Fig. 4). Furthermore, place field width and amplitude
optimization significantly increases maximum cumulative reward and speed of policy convergence
(Fig. 4A-B).

Most models that characterized representational drift were not studied under the context of navi-
gational policy learning as in the experiments (Pashakhanloo & Koulakov, 2023; Qin et al., 2023;
Ratzon et al., 2024). We showed that increasing the noise magnitudes caused different drift regimes
(Fig. 3F), and at very high noise levels navigation behavior started to collapse (Fig. 3C, Sup. Fig.
5). Importantly, we showed that fields in the noisy regime allowed agents to consistently learn new
target in both 1D (Fig. 4C) and 2D (Sup. Fig. 9A-B) environments, without getting stuck in local
minima. A recent experiment shows that fields exhibit higher drift and remapping when reward
expectancy changes (Krishnan & Sheffield, 2023; Krishnan et al., 2022). A difficult experiment
that would more directly test our model is to induce or constrain place field drift rates in animals
and determine how this perturbation influences new target learning. How fluctuations in dopamine,
stochastic actions or stochastic firing rates within place fields, or some combination of these factors
drive drift needs to be explored. The current model provides a starting point for investigating these
questions.

The proposed model is not without limitations. First, we modelled single peaked place fields in-
stead of the complex representations resulting from single “place” cells, which can be multi-field
and multi-scale. However, the proposed online reinforcement learning framework is general enough
to accommodate other models for place cell response statistics (Mainali et al., 2024) and could
be extended to study representation learning in other brain regions such as the medial entorhinal
(Boccara et al., 2019) or the posterior parietal (Suhaimi et al., 2022) cortex. Next, place field pa-
rameters are optimized by backpropagating the temporal difference error through the actor and critic
components. Since the motivation was to develop a normative model whose objective was to max-
imize rewards, this was a reasonable starting point. However, this model must be extended using
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biologically-plausible learning rules before it can in any way be considered mechanistic (Edelmann
& Lessmann, 2018; Kempadoo et al., 2016; Krishnan et al., 2022; Lee et al., 2024; Lillicrap et al.,
2016; Starkweather & Uchida, 2021).

Lastly, though we performed extensive computational experiments to demonstrate that the model
recapitulates the phenomena of interest, we focused mostly on TD learning in a 1D track. To gain a
full understanding of the model’s generality and robustness (Schaeffer et al., 2022), testing whether
these results are robust to the use of other reinforcement learning algorithms, such as policy gradient
(Kumar & Pehlevan, 2024), will be an important task for future work. Though we did consider
a handful of 2D settings, it will also be important to comprehensively study higher-dimensional
navigation tasks.
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A DETAILS OF THE PLACE FIELD-BASED NAVIGATION MODEL

A.1 PLACE FIELDS IN 1D AND 2D ENVIRONMENTS

The agent contains N place fields. In a 1D track, each place field is described as

ϕi(xt) = α2
i exp

(
−||xt − λi||22

2σ2
i

)
, (9)

with α, λ and σ describing the amplitude, center and width, adapted from Foster et al. (2000); Kumar
et al. (2022; 2024b). Most of the simulations were initialized with amplitudes αi = 0.5 and widths
σi = 0.1, with centers uniformly tiling the environment λ = {−1, ..., 1}. Nevertheless, similar
representations emerge for amplitudes drawn from a uniform distribution between [0, 1] and widths
uniformly drawn between [0.01, 0.25]. This parameter initialization was used for ablation studies in
Fig. 4. In a 2D arena, each place field is described as

ϕi(xt) = α2
i exp

[
−1

2
(xt − λi)

⊤Σ−1
i (xt − λi)

]
, (10)

where Σi is a 2x2 covariance matrix, adapated from Menache et al. (2005). The off-diagonals were
initialized as zeros and diagonals initialized to match the variance in the 1D place field description,
i.e. Σii = 0.12 to ensure field widths are consistent in 1D and 2D.

A.2 REWARD MAXIMIZATION OBJECTIVE (POLICY GRADIENT)

The objective of the model is to learn a policy π parametrized by Wπ and spatial features ϕ param-
eterized by θ that maximizes the expected cumulative discounted rewards over trajectories τ in a
finite-horizon setting, modeling the trial structure in neuroscience experiments

JG = Eτ∼ϕθ,πWπ

[
T∑
t=0

T∑
k=0

γkrt+1+k

]
= E

[
T∑
t=0

Gt

]
, (11)

where γ is the discount factor, rt+1 is the reward at time step t+ 1 after choosing an action at time
step t, and the time horizon T is finite with trials ending after a maximum of 100 steps in the 1D
track and 300 steps in the 2D arena.

To maximize the cumulative reward objective, we perform gradient ascent on the policy and place
field parameters,

θnew = θold + ηθ∇θJG , Wπ
new =Wπ

old + η∇WπJG , (12)
where ηθ and η are learning rates for θ and Wπ respectively. The gradients are derived using the
log-derivative trick,

∇θ,WπJG = ∇θ,WπE [G(τ)] (13)

= ∇θ,Wπ

∫
τ

p(τ |θ,Wπ)G(τ) (14)

=

∫
p(τ |θ,Wπ)∇θ,Wπ log p(τ |θ,Wπ)G(τ) (15)

= E [∇θ,Wπ log p(τ |θ,Wπ)G(τ)] , (16)
where the trajectory τ describes the state to state transitions. We expand the above using,

p(τ |θ,Wπ) = p(x0)

T∏
t=0

p(xt+1|xt)π(gt|xt; θ,Wπ) (17)

log p(τ |θ,Wπ) = log p(x0) +

T∑
t=0

(log p(xt+1|xt) + log π(gt|xt; θ,Wπ)) (18)

∇θ,Wπ log p(τ |θ,Wπ) =

T∑
t=0

log π(gt|xt; θ,Wπ) . (19)
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Since the gradients are not dependent on the state transitions, the last line excludes them. Substitut-
ing Eq. 19 into Eq. 16 yields

∇θ,WπJG = E

[
T∑
t=0

∇θ,Wπ log π(gt|xt; θ,Wπ) ·Gt

]
, (20)

which completes the full derivation of the policy gradient theorem (Sutton & Barto, 2018; Sutton
et al., 1999). The policy gradient objective was used by Kumar & Pehlevan (2024) to optimize the
policy and place field parameters. However, this learning signal requires an explicit reward and
policy gradient methods are slow to converge as they suffer from high variance due to:

• Monte Carlo sampling: Agents need to sample an entire episode to estimate the expected
return Eτ [Gt = rt+1+γrt+2+γ

2rt+3+ ...] before updating the policy. This can introduce
significant variance because the estimate is based on a single path through the stochastic
environment, which may not be representative of the expected value over many episodes.

• No Baseline: The basic policy gradient algorithm computes the gradient solely based on the
return G from each trajectory. By introducing a baseline (either constant b or dynamically
evolving bt e.g. value function vt), which estimates the expected return from a given state,
the variance of the gradient estimate can be reduced, because now the policy learns which
action is better than the previous (concept of using an Advantage At instead of rewards).

Value based methods (Sutton & Barto (2018), Chapter 3.5) were introduced to address some of
these issues. For instance, instead of sampling returns Gt, value functions Vt learn to estimate the
expected returns

Vt = E[Gt] , (21)

which can reduce the variance during credit assignment. The combination of policy gradient with
value-based methods lead us to the Actor-Critic algorithm.

A.3 ALTERNATIVE REWARD MAXIMIZATION OBJECTIVE (TEMPORAL DIFFERENCE)

The optimal value function Vt reflects the true expected cumulative discounted rewards, hence the
policy gradient objective can be rewritten as

JG = E

[
T∑
t=0

Gt

]
= E

[
T∑
t=0

T∑
k=0

γkrt+1+k

]
=

T∑
t=0

Vt , (22)

= E

[
T∑
t=0

rt+1 + γ

T∑
k=0

γkrt+2+k

]
, (23)

JG = E

[
T∑
t=0

rt+1 + γGt+1

]
= E

[
T∑
t=0

rt+1 + γVt+1

]
. (24)

which yields the following self-consistency equation

rt+1 + γVt+1 − Vt ≡ 0 , (25)

as argued by Frémaux et al. (2013); Sutton & Barto (2018).

Alternatives to policy gradient algorithms propose subtracting a baseline which can be a fixed con-
stant b or a dynamically changing variable bt. Since we have the value function Vt we can modify
the objective to be

J A = E [Gt − Vt] = E [At] = E

[
T∑
t=0

rt+1 + γVt+1 − Vt

]
, (26)
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which gives us the Advantage function (Mnih et al., 2016; Schulman et al., 2015). This reduces
the variance as the policy has to learn to select actions that gives an advantage over the current
value function. We get a learning objective function that is an analogue to maximizing the expected
cumulative discounted returns while subtracting a baseline Eq. 11.

∇θ,WπJ A = E

[
T∑
t=0

∇θ log π(gt|xt; θ,Wπ) ·At

]
. (27)

However, we have assumed that we are given the optimal value function Vt to critique the actor if it
is doing better or worse than before. Instead, we can learn to estimate the value function vt using a
critic by minimizing the Temporal Difference error. This TD error arises when the estimated value
function is not optimal vt ̸= E[Gt], causing the equivalence to break

rt+1 + γvt+1 − vt = δt . (28)

The critic can learn to approximate the true value function by minimizing the mean squared error
between the true value function Vt and the predicted vt, or the temporal difference error δt

Lv = E

[
T∑
t=0

1

2
(V (xt)− v(xt; θ, w

v))
2

]
(29)

= E

[
T∑
t=0

1

2
(rt+1 + γV (xt+1)− v(xt; θ, w

v))
2

]
. (30)

Since we do not have the optimal value function Vt, we can approximate it by bootstrapping the
estimated value function vt and ensuring that we do not take gradients with respect to the time
shifted value estimate v(xt+1)

LTD = E

[
T∑
t=0

1

2
(rt+1 + γv(xt+1)− v(xt; θ, w

v))
2

]
(31)

= E

[
T∑
t=0

1

2
δ2t (θ, w

v)

]
. (32)

We minimize the temporal difference error using gradient descent for the critic to estimate the value
function

∇θ,wvLTD =
∂LTD

∂δ
· ∂δ
∂v

· ∇θ,wvv(θ, wv) , (33)

= E

[
T∑
t=0

δt · (−1) · ∇θ,wvv(xt; θ, w
v)

]
, (34)

= E

[
T∑
t=0

−∇θvv(xt; θ, w
v) · δt

]
. (35)

Notice the additional negative sign that pops out when you take the derivative of δ only with respect
to vt

∂δ

∂v
=
∂(rt+1 + γvt+1 − vt)

∂vt
= −1 , (36)

since rt+1 and vt+1 are treated as constants, we do not take their derivatives. Since we do not have
the optimal value function Vt but a biased estimate vt, we can use the temporal difference error as
our reward maximization objective

J TD = E

[
T∑
t=0

rt+1 + γvt+1 − vt

]
= E

[
T∑
t=0

δt

]
. (37)

As the value estimation becomes closer to the optimal value vt → Vt, this objective becomes similar
to the advantage objective J TD → J A. Note that we are not directly maximizing the TD error
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during policy learning. Rather, we want to optimize the policy π and place field parameters θ by
gradient ascent, using the biased estimate of the advantage function

∇θ,WπJ TD = E

[
T∑
t=0

∇θ,Wπ log π(gt|xt; θ,Wπ) · δt

]
. (38)

An alternative interpretation is that during policy learning, the agent learns a policy to maximize the
difference between the actual reward and the estimated value

A.4 COMBINED REWARD MAXIMIZATION OBJECTIVE FOR PLACE FIELD PARAMETERS

In our model (Fig. 1A), actor Wπ and critic wv weights are optimized separately, while the place
field parameters θ overlap. The actor uses gradient ascent for Eq. 38, and the critic employs gradient
descent for Eq. 35. Since we have a single population of place fields, we optimize these parameters
to support both objectives. Thus, we derive a combined objective function to update Wπ , wv , and θ
in a single gradient pass

∇Wπ,wv,θJ = ∇Wπ,wv,θJ TD −∇Wπ,wv,θLTD (39)

= E

[
T∑
t=0

∇Wπ,wv,θ log π(gt|xt;Wπ, θ)δt

]
− E

[
T∑
t=0

−∇Wπ,wv,θv(xt;w
v, θ)δt

]
,

(40)

= E

[
T∑
t=0

∇Wπ,wv,θ log π(gt|xt;Wπ, θ)δt +∇Wπ,wv,θv(xt;w
v, θ)δt

]
, (41)

= E

[
T∑
t=0

(∇Wπ,wv,θ log π(gt|xt;Wπ, θ) +∇Wπ,wv,θv(xt;w
v, θ)) δt

]
. (42)

where ∇wvJ TD = 0 and ∇WπLTD = 0 since the respective objectives are not parameterized by
wv and Wπ respectively. This means that Wπ is tuned to maximize J TD, wv is tuned to minimize
LTD and θ is tuned to balance both the objectives.

Since most optimizers e.g. in Tensorflow, PyTorch perform gradient descent, not ascent, we can
minimize the negative policy gradient Eq. 38, which is equivalent to the negative log likelihood

∇Wπ,wv,θL = −∇Wπ,wv,θJ TD +∇Wπ,wv,θLTD (43)

= −E

[
T∑
t=0

∇Wπ,wv,θ log π(at|xt;Wπ, θ) · δt

]
+ E

[
T∑
t=0

−∇Wπ,wv,θṽ(xt;w
v, θ) · δt

]
,

(44)

= E

[
T∑
t=0

∇Wπ,wv,θ − log π(at|xt;Wπ, θ) · δt

]
+ E

[
T∑
t=0

−∇Wπ,wv,θṽ(xt;w
v, θ) · δt

]
,

(45)

= ∇Wπ,wv,θLTDπ +∇Wπ,wv,θLTDv . (46)

which is the same update rule used in Mnih et al. (2016); Wang et al. (2018) to train the actor and
critic separately while the feature parameters are trained jointly.

It is also possible to initialize two separate populations of place fields, each for the actor and critic.
Alternatively, we only optimize place field parameters using the actor’s objective while the critic
uses the spatial features to learn the value function. The converse is also possible where the place
field parameters and critic weights are optimized to minimize the TD error while the actor learns a
policy without optimizing the spatial representations, as we did in the perturbative approximation
(App. B). From numerical experiments, optimizing place field parameters using both the actor and
critic objectives allowed the agent to achieve the fastest policy convergence and highest cumulative
reward performance (Sup. Fig. 1).
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A.5 ONLINE UPDATE OF PLACE FIELD AND ACTOR-CRITIC PARAMETERS

Now, we derive an online implementation of Eq. 6 which is the same as Eq. 42, so that all parameters
are updated at every time step. Extending from Foster et al. (2000); Kumar et al. (2022), the actor
and critic weights are updated according to the gradients

∆wvi (t+ 1) = ηδtϕi(xt) , ∆Wπ
ji(t+ 1) = ηδtϕi(xt)g̃

⊤
t,j , (47)

where g̃t,j = gt − P and η = 0.01. The gradient updates for place field parameters follow

∆θi(t+ 1) = ηθδt
(
wvi (t) +Wπ

ji(t) · g̃t,j
)
∇θϕi(xt; θi) , (48)

where we use a significantly smaller learning rate ηθ = 0.0001 so that the spatial representation
evolves in a stable manner. Specifically, each field parameter is updated according to

δbpi,t = δt
(
wvi (t) +Wπ

ji(t) · g̃t,j
)
, (49)

∆αi,t = ηα · δbpi,t · ϕi(xt) ·
(

2

αi

)
, (50)

∆λi,t = ηλ · δbpi,t · ϕi(xt) ·
(
xt − λi
σ2
i

)
, (51)

where δbpi,t is the TD error gradient that has been backpropagated through the actor and critic weights.
Using just the wvi (t) or Wπ

ji weights alone to backpropagate the TD error influences the represen-
tation learned by the place field population and ultimately the navigation performance (Sup. Fig.
1).

There are two ways to optimize the place field width parameter. The first and straightforward method
is to update the width parameter according to

∆σi,k,t = ησ · δbpi,t · ϕi,k(xt) ·

(
(xt − λi)

2

σ3
i,k

)
, (52)

where k = 1 in a 1D place field. In a 2D place field with k = 2, we can update the diagonal elements
in the 2D matrix while keeping the off-diagonals to zeros as in Menache et al. (2005). However,
fields will only elongate along each axis. Instead, in our simulations, we optimized the off-diagonals
using the same gradient flow equations. However, we needed to include additional constraints so that
each place field’s covariance matrix remains 1) symmetric, 2) bounded, and 3)positive semi-definite
to perform matrix inversion. Specifically, the covariance matrix was bounded between [10−5, 0.5]
to prevent exploding widths and gradients. Refer to the Github code repository for implementation
details.
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B DERIVATION FOR PERTURBATIVE EXPANSION

The dynamics of place field parameters are nonlinear and difficult to characterize analytically. To
gain some analytical tractability, we impose a strong separation of timescales between policy learn-
ing updates and place field parameter updates. To do so, we set the learning rates for the actor-critic
η to be much larger than the learning rates for the place field parameters ηα, ηλ, ησ ≪ η. In simula-
tions, we use η = 0.01 and ηθ = 0.0001.

The critic estimates the value as

v(xt) =

N∑
i=1

wiϕi(xt,θi) , (53)

where θi = (αi, λi, σi) are neuron specific parameters (amplitude, mean, and bandwidth respec-
tively). We write wv as w for clarity. To start with let’s just consider

ϕi(xt,θi) = α2
i exp

(
− 1

2σ2
i

(xt − λi)
2

)
. (54)

We consider a TD based update, which in the gradient flow (infinitesimal learning rate) limit can be
approximated as

d

dt
w(t) =M(t)(wV −w(t)) , (55)

d

dt
θi(t) = ϵ wi(t)Ext

∇θi
ϕi(xt,θi)δt , (56)

The key assumption we make is that the dimensionless ratio of learning rates, ϵ is perturbatively
small

ϵ =
ηθ
η

≪ 1, (57)

where ηθ is the learning rate for the place field parameters θi and η is the learning rate for the
actor-critic. The matrix M(t) = Σ(t) − γΣ+(t) where Σ = ⟨ψ(xt)ψ(xt)⟩ and Σ+(t) =〈
ψ(xt)ψ(xt+1)

⊤〉 depends on the equal time and time-step shifted correlations of features. The
vector wV =M−1ΣwR where wR ·ψ(x) = R(x). We investigate a simple perturbation series.

w(t) = w0(t) + ϵw1(t) + ϵ2w2(t) + ...

θ(t) = θ0(t) + ϵθ1(t) + ϵ2θ2(t) + ... (58)

and examine the dynamics up to first order in ϵ. We will show that this recovers many qualitative
features of the observed representational updates.

The leading zeroth order dynamics are

d

dt
θ0(t) = 0 ,

d

dt
w0(t) =M0(wV −w0(t)) , (59)

whereM0 = Σ(0)− γΣ+(0) is the initial feature covariance under the initial policy.

B.1 PLACE FIELD AMPLITUDE

We start by asserting a separation of timescales between training readout weights and feature pa-
rameters during a simple TD learning setup

d

dt
wi(t) =

∑
j

Mij(w
V
j − wj) , (60)

d

dt
αi(t) = ϵ

2

αi(t)
wi
∑
j

Mij(w
V
j − wj) , (61)

The zero-th order solution to Eq. 55 is
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∆w0(t) ≡ wV −w0(t) = exp (−M t)wV , (62)
w0(t) = [I − exp (−M t)]wV , (63)

which can be substituted in to get the first order correction to the dynamics for θ

d

dt
α1(t) = 2α−1

0 ⊙ [I − exp (−M t)]wV ⊙M exp (−M t)wV . (64)

Under the condition that α0 = 1 and M = M⊤ we can work out an exact expression in terms of
the eigendecompositionM =

∑
k λkuku

⊤
k

α1(t) = 2
∑
kℓ

(wV · uk)(uℓ ·wV ) (uk ⊙ uℓ)
[
(1− e−λkt)− λk

λk + λℓ
(1− e−(λk+λℓ)t)

]
, (65)

we can approximate this at late times as
lim
t→∞

α1(t) ≈ 2wV ⊙wV . (66)

As t → ∞ we can approximate this as limt→∞ θ(t) ≈ 2(wV )
2. This indicates that neurons which

are heavily involved in the reproduction of the value function are upweighted in their amplitude.

B.2 FIELD CENTER

Based on the place field center update equation and rewriting the terms as above,

d

dt
λi(t) ≈ ϵ

xt − λi
σ2
i

wiϕi(x)
∑
j

ϕj(x)(w
V
j − wj) . (67)

We need to compute an average over spatial positions. We approximate the space position early in
training as a Gaussian with mean s0 and variance σ2

x〈
(xt − λi)

σ2
ϕi(x)ϕj(x)

〉
≈ µij − λi

σ2
Mij , (68)

where µij =
(

2
σ2 + 1

σ2
x

)−1 (
1
σ2 (λi + λj) +

1
σ2
x
µ̄x

)
is the mean value of x obtained by the above

Gaussian integral under the approximation that p(x) ∼ N (µ̄x, σ
2
x). Approximating λj as the mean

position of the tuning curves λ̄ we obtain the following prediction

λ(t)− λ(0) ≈ ϵwV ⊙

[(
2

σ2
+

1

σ2
x

)−1(
1

σ2
(λ(0) + λ̄) +

1

σ2
x

µ̄x

)
− λ(0)

]
⊙ [I − exp (−M t)]wV .

(69)

Following the solution in Eq. 63, we can approximate this at late times as

lim
t→∞

λ(t)− λ(0) ≈ ϵwV ⊙

[(
2

σ2
+

1

σ2
x

)−1(
1

σ2
(λ(0) + λ̄) +

1

σ2
x

µ̄x

)
− λ(0)

]
⊙wV . (70)

Hence, in addition to the value of a location, three additional factors influence each field’s displace-
ment.

λi(t)− λi(0) ≈
ηλ
η

(
2

σ2
i

+
1

σ2
x

)−1 [
λ̄− λi(0)

σ2
i

+
µ̄x − λi(0)

σ2
x

]
w2
v,i(t) , ηλ ≪ η , (71)

where λ̄ is the agent’s expected location sampled from its policy, µ̄x = −0.75 is the starting location
and σx is the estimated spread of the trajectory. This analysis suggests that fields will be influenced
by both the start location and the location where the agent spends a higher proportion of time at. In
later learning phases, this will be the reward location λ̄ = 0.5. Consequently, only the fields near the
reward location will shift towards the reward, while the rest of the fields will move towards the start
location. We illustrate this perturbative approximation at early and late times of training in Figure 5.
The theory is quite accurate early in training, but fails at sufficiently long training time.
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Figure 5: Difference in early versus late time perturbative approximation. Blue scatter points
shows the magnitude and direction of change in (N = 256) field center position compared to the
position at which the fields were initialized (λi(T ) − λi(0)). (A) In early time, the perturbative
expansion is a good fit to the field center displacement, and captures the shift in fields towards the
reward location xr = 0.5 (red) (B) As learning proceeds, the approximation begins to break down
for fields further from the reward location. Free parameters were fit with λ̄ = 0.535 and σx = 0.45.

C DETAILS FOR THE SUCCESSOR REPRESENTATION AGENT

The generalized temporal difference error is given by

δSRt,j = ϕj(xt) + γψπj (xt+1)− ψπj (xt) , (72)

with Mi representing the predicted successor representation and ϕ(x) representing the initialized
place field representation that is not optimized.

ψπi (xt) =

N∑
i

[Uji]+ϕi(xt) , (73)

The successor representation is computed using a summation of the place fields with a learned matrix
U that is positively rectified. The rectification is necessary to have a non-negative representation.

∆Ut = ϕi(xt) · δ⊤t,j , (74)

The matrix U is initialized as an identity matrix and is updated using a two-factor rule using the TD
error as in Gardner et al. (2018).

D DETAILS FOR NOISY FIELD UPDATES

To induce drift, we independently introduced noise to field amplitudes, centers and width, as well as
the synapses to the actor and critic (θ ∈ {α, λ, σ, wv,Wπ}).

θt+1 = θt + ξt , (75)

where the noise term ξt are independent Gaussian noises with zero mean and magnitude σnoise ∈
{10−6, 10−1}. We performed a noise sweep to determine how increasing the noise magnitude af-
fected the agent’s reward maximization behavior, population vector correlation and representation
similarity. Refer to Sup. Fig. 5.
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E SUPPLEMENTARY FIGURES

Supplementary Figure 1: Difference in policy convergence when backpropagating temporal dif-
ference error through the actor and/or critic weights to optimize place field parameters. We
evaluate the speed of policy learning when optimizing place field parameters using (1) the actor
weights Wπ multiplied by the normalized action vector g̃t = gt − P and the critic weights wv
(blue) (2) only the the actor weights multiplied by the normalized action vector (orange) (3) only the
critic weights (green). The combined objective used for place field parameter optimization achieved
the fastest policy convergence when the number of fields was low (N = {8, 16, 32}) (blue). With
more fields, using critic weights (green) was as effective as the combined objective. Optimizing
place field parameters using only the actor weights led to the slowest policy convergence (orange).
Shaded area indicates 95%CI over 30 random seeds with place field amplitudes and widths uni-
formly initialized between [0,1] and [0.025, 0.1] respectively.

24



Preprint

Supplementary Figure 2: Influence of place field parameter optimization. Example change in
individual field’s spatial selectivity (ϕ(x), colored) and density (d(x), red) when optimizing different
combinations of field parameters (α, λ, σ) during learning.
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Supplementary Figure 3: SR agent architecture and field dynamics. (A) Successor Representation
(SR) agent architecture to learn a navigational policy and the SR place fields. Only the synapses
from the initialized place field (ϕfixed) to the actor (red) and critic (green), and the synapses to the
SR fields (ψ) were plastic. Refer to App. C for implementation details. (B) Difference in reward
maximization behavior between SR and RM agent, contributing to the dip in correlation between
the proportion of time spent in a location by both agents in Fig. 2D black line. (C) Average change
for 16 place fields’ size (firing rate greater than 10−3 in the track) (left) and center of mass (right)
when SR and RM agents navigate in a 1D track with the absolute change reflected in the left and
right y axis. Shaded area shows 95%CI over 10 different seed iterations. (D) Spatial representation
similarity matrix for SR (top row) and RM (bottom row) agents in a 1D track is visualized by taking
the dot product of the place field activity at each location.
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Supplementary Figure 4: Field elongation in 2D arena. (A-B) 2D Place field distortion dy-
namics by SR (A) and RM (B) agents as learning proceeds. Numbers in yellow on the obsta-
cle indicates Field ID-Maximum firing rate(C) Average change in 256 field sizes (left) and cen-
ter of masses (right) for SR and RM agents navigating in a 2D arena. Shaded area shows 95%
CI over the 256 fields. Note that agent start randomly from three different locations xstart ∈
{(−0.75,−0.75), (−0.75, 0.75), (0.75, 0.75)} to navigate to the target at xr = (0.75,−0.75). The
change in field COM shows the average change in center of mass with respect to each starting loca-
tion. Hence, the averaged backward shift in center of mass might not be extensive.
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Supplementary Figure 5: Noise amplitude monotonically influences population vector correla-
tion and agent performance. Adding Gaussian noise with increasing magnitude [5x10−7, 101]
either in field parameters (α, λ, σ) or Actor-Critic (Wπ, wv) influences the variance in Population
Vector Correlation (RPV , blue), Spatial Representation Similarity which is the dot product of field
activity (RRS , orange) and cumulative discounted reward (G, green). Low variance of RPV and
RRS indicates high correlation as learning progresses. Low variance in G indicates stable perfor-
mance. When G increases before decreasing as the noise amplitude increases, agent’s navigation
performance collapsed and the agent achieves 0 reward with low variance. A high ratio of variance
in population vector correlation and reward maximization behavior (RPV /G, red) indicates that
there is an optimal noise amplitude which causes high variance in population vector correlation (low
PV correlation) while demonstrating stable performance. A similar analysis can be performed using
representational similarity (RPV /RRS , purple) to determine the optimal noise amplitude for high
variance in population vector correlation but stable representation similarity as seen in Qin et al.
(2023). Note that our agents are only optimizing for navigation behavior instead of representation
similarity.
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Supplementary Figure 6: Influence of noisy fields on agent performance and field representa-
tion. (A) Reward maximization performance variability increases when noise magnitude increases.
(B) With no noise injection, variance in parameter update is initially positively correlated with field
amplitude (blue). When a small amount of noise is added, fields with a larger mean amplitude show
a smaller variance in change in parameter while fields with a smaller amplitude show higher vari-
ance. Conversely, when the magnitude of noise is further increased (purple), fields with a higher
amplitude show higher variance in its parameters. (C) The correlation between mean amplitude and
the magnitude of the readout weights (sum over all actions for squared actor weights and squared
critic weights) is high and positively correlated when the noise magnitude is low. This correla-
tion decreases and becomes weakly positive when σnoise = 0.001. This supports the claim that in
the low noise regime, fields with a high amplitude are more involved in policy learning and hence
drift less or are more stable to maintain performance integrity. (D) Population vector correlation
decreases at a faster rate than the similarity matrix when noise magnitude increases. (E) Represen-
tation similarity correlation decreases as the noise magnitude increases, but at a slower rate than PV
correlation. (F) Proportion of fields that are active (average fraction of fields with firing rate less
than 0.05, 0.1,0,25) continues to increase with higher noise magnitude.
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Supplementary Figure 7: Influence of field width and number of fields on agent performance.
(A) Fields initialized with σ = 0.1 and (B) σ = 0.05. Policy learning is slower when initialized
with a smaller field width. (C) Influence of field parameter optimization on the average maximum
cumulative reward (left) and trial at which agent achieves cumulative discounted reward of 45 and
above for the previous 300 trials (right). Correlation plot shows the p-value for a pairwise t-test
performed to determine the influence of fields parameters on learning performance.
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Supplementary Figure 8: Influence of noise on new target learning performance in 1D track.
Increasing the number of place fields (N ) and field widths (σ) led to a general increase in new target
learning performance. When no noise was injected to field parameters (σnoise = 0.0, blue), most
agents struggled to learn to navigate to new targets and seem to be stuck in a local minima. Instead,
noise magnitude of σnoise = 0.0005 allowed agents to maximize rewards throughout the 250,000
trials. Increasing the noise magnitude beyond this (σnoise = 0.001) negatively affected the agent’s
target learning performance, especially when the number of fields were low.
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Supplementary Figure 9: Influence of noise on learning performance in 2D arena with an
obstacle. (A) Agents started at the same location xstart = (0.0, 0.75) and had to navigate
to a target that changed to a new location every 50,000 trials following the sequence (xr ∈
[(0.75,−0.75), (−0.75, 0.75), (0.75, 0.75), (−0.75,−0.75)]). Increasing the noise magnitude im-
proved new target learning performance. (B) Agents learned to navigate to a target at xr =
(0.75, 0.0) from a start location xstart = (−0.75, 0.0) with an obstacle with coordinates (xmin =
−0.2, xmax = 0.2, ymin = −1.0, ymax = 0.5) for the first 50,000 trials. After which, the location
of the obstacle was shifted up to (xmin = −0.2, xmax = 0.2, ymin = −0.5, ymax = 1.0) while the
start and target location was the same. Agents with a noise magnitude σnoise = 0.00025 showed
the highest average reward maximization performance followed by σnoise = 0.0005. A high noise
magnitude (σnoise = 0.001) disrupted learning performance while agents without noisy field up-
dates (σnoise = 0.0) did not learn to navigate around the new obstacle. Note that field amplitudes
and widths were clipped to be between [10−5, 2] and [10−5, 0.5] respectively to ensure the Σ co-
variance matrix in 2D place fields remained valid for matrix inversion. Performance was averaged
over agents initialized with different number of 2D place fields (N ∈ {64, 144, 256, 576}) with the
diagonals of the field width initialized with Σ = 0.01 and constant amplitude α = 1.0, over 30
different seeds. Shaded area is 95% CI.
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