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SUMMARY 

 

One-shot learning is the ability to solve a problem after a single trial, a feat that 

animals and humans demonstrate daily. Although symbolic algorithms and 

recent deep learning algorithms can perform one-shot learning, they do not use 

biologically plausible learning rules. Hence, how the brain performs 

computations underlying one-shot learning remain elusive. In this thesis, I 

outline how biologically plausible neural circuits and learning rules can perform 

one-shot learning of new paired associations in a spatial navigation task. The 

phenomenon of one-shot learning has been studied as a part of various 

paradigms by different fields i.e. memory schemas in psychology and transfer-

learning or meta-learning in computer science. A generally accepted perspective 

is that if new information can fit into a previously learned knowledge structure 

or schema, the novel task can be solved rapidly. Tse et al. (2007) trained rats to 

perform a two-part task. In the first part rats gradually learned multiple 

FLAVOUR-LOCATION paired associations. In the second part, rats were 

exposed to two new paired associations for a single trial, which they were able 

to recall in subsequent probe trials, demonstrating one-shot learning. Hence, I 

first developed a biologically plausible reinforcement learning agent that 

successfully learned multiple paired associations as in the first part of Tse’s task. 

However, the agent was not able to learn new paired associations after a single 

trial as in the second part of Tse’s experiment. Three schemas were missing 

from this agent, 1) the ability to learn a metric representation of current location 

2) the ability to form new associations between relevant cues and the goal 

location after a single trial and 3) the ability to compute the direction to arbitrary 

goals from current location. I constructed an agent that learned (1) using place 

cell activity and self-motion information to compute and minimise a temporal 

difference error based on the principles of path integration. For (2), the synaptic 

weights between a reservoir of recurrently connected units and output units were 

trained using a reward-modulated Exploratory Hebbian plasticity rule to store 

and recall multiple goal coordinates after a single trial and for (3), a deep neural 

network was pretrained. With these biologically plausible schemas, I have 

demonstrated agents that, after an initial period of gradual learning, can navigate 

to multiple new goal locations after a single trial of learning, replicating the 

rodent behaviour results from Tse et al. (2007).   
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CHAPTER 1 Introduction 

Imagine that you are going out on a date and when you present some flowers, your date 

frowns. On the subsequent date, you recall that your date dislikes flowers, and you 

present them with chocolates instead. This time, your date is ecstatic! From then on, 

you would present chocolates to this specific date. 

This is an example of one-shot learning where we utilize our prior knowledge (that we 

should get either flowers or chocolates as a gift when going for a date) to solve a 

problem (chocolate is the better gift for date X) after a single episode. We perform such 

computations daily and yet how the brain performs these computations remains poorly 

understood.  

To begin this inquiry, we turn to Marr’s three levels of analysis (Marr 2010). He argues 

that if we want to understand the phenomenon of flight, looking only at the feathers of 

a bird will not be sufficient. Similarly, if we want to understand the biological 

computations underlying one-shot learning, looking only at the neuronal level will not 

be sufficient. Marr suggests decomposing the problem to three levels, namely 

1) Computational: What is the problem the system is solving and why is it 

important? 

2) Algorithmic: What algorithm or software is the system using to solve the 

problem? 

3) Implementation: How is the algorithm implemented in the physiological 

hardware?   

Some might argue that the three levels could be broken down to infinite levels, or that 

understanding all three levels is unnecessary. Nevertheless, this hierarchy is a good 

starting point towards attaining a holistic understanding (functional and mechanistic) 

of how a biological system performs one-shot learning. 
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In the next section, I attempt to categorise past works on one-shot learning into the 

three levels although the distinction between levels should be treated as a guide and not 

definitive. 

1.1 Computational problem 

The computational problem is to solve a novel task after a single episode. This could 

mean that the system initially requires several attempts to figure out the solution, but 

once a solution is found, the system should be able to replicate it in the following 

episode to demonstrate one-shot learning.  

Genetic adaptation to changing environments or novel tasks happens over several 

generations, for example the proliferation of new COVID-19 strains albeit within a few 

months (Gu et al. 2020). However, genetic adaptation processes are very slow for 

animals and humans and instead the nervous system offers individuals the ability to 

adapt to an array of problems within a generation. 

Understanding how the brain performs one-shot learning could offer us solutions to 

optimise education pedagogies and curricula to improve our adaptation capabilities 

(Carrell and Eisterhold 1983; Jitendra and Star 2011; Johansen 1997; McVee, 

Dunsmore, and Gavelek 2005), alleviate learning disabilities (Engineer, Hays, and 

Kilgard 2017; Nemeroff et al. 2006; Weingartner 1981) and at the same time, develop 

efficient algorithms that can solve other problems (Hassabis et al. 2017).  

1.1.1 Memory schemas for one-shot learning 

Memory schemas have been an appealing theory for how animals and humans 

demonstrate one-shot learning.   

Bartlett was the earliest to demonstrate subjects using prior knowledge or schemas to 

reconstruct information to solve memory recall tasks (Bartlett and Burt 1932). 

Strikingly, when subjects could not recall the details of a narrated story, they filled in 
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the gaps using their own schemas which had subjective biases (Anderson and Pichert 

1978; Barto, Sutton, and Anderson 1983; Darley and Gross 1983; DiMaggio 1997).  

For example, subjects were briefly shown an image of a bathroom and they were more 

likely to recall the presence of schema congruent object such as a toilet and sink, 

although the sink was absent. Moreover, subjects failed to recall schema incongruent 

objects such as the radio and flower vase, although the flower vase was present. 

(Brewer and Treyens 1981; Graesser and Nakamura 1982; Webb and Dennis 2019).  

Minsky and Rumelhart conceptualised schemas as knowledge frameworks that 

organized how information was to be associated or processed. Importantly, schemas 

contained empty placeholders in which to slot new information while specific rules 

governed what information could fit the respective placeholders (Minsky 1974; 

Rumelhart, Smolensky, and McClelland 1987). A schema with either some or all 

placeholders filled can be used to reconstruct information and serve as a guide for 

inference (Rumelhart 1980; Rumelhart and Ortony 1977).  

For example, the NAVIGATE schema (Fig. 1.1 left) describes the process of moving 

from an arbitrary location X to a goal location Y by selecting appropriate actions from 

subschema ACTIONS that contains directions of movement. This single uninstantiated 

schema can be used to generate numerous instantiations for goal-directed movement 

by slotting appropriate information into the placeholders.  

Instantiated schemas allow us to make inferences. For example, once a suitable 

ANIMAL schema is populated, we can make associative inferences that Salmon and 

Robin are red, but Salmon is a FISH and Robin is a BIRD. 
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Figure 1.1. A single episode is sufficient to fill schema placeholders for inference. 

Schemas facilitate one-shot learning where a single episode is sufficient to fill empty 

placeholders with the relevant information to make an inference. Left: NAVIGATE 

schema describes which actions can be taken to navigate to a goal from arbitrary 

locations using placeholders Y and X respectively. Right: ANIMAL schema describes 

the similarities and differences between bird or fish based on associations.  

 

When a placeholder is unfilled, the rules governing the placeholder can be used to 

prompt a question, such as "What is the goal coordinate to navigate to?" Once the 

relevant information becomes available, it can be slotted into the schema after a single 

episode to demonstrate one-shot learning. 

Information that could fit a schema was termed schema congruent such as finding a 

sink in a toilet, while those that did not comply with the rules of the placeholders were 

termed as schema incongruent (McClelland 2013), such as finding a flower vase in a 

toilet.  

Piaget’s influential work on child development noted that when children come across 

schema incongruent information, they experienced cognitive dissonance or 

disequilibrium. To reach equilibrium, children resorted to either assimilation, which is 

to modify the information to fit their schema, or accommodation, where they modified 
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their schema to fit the information (Piaget, Inhelder, and Chipman 1976; Zhiqing 

2015). This process extends to adults, for example a person who strongly believes the 

earth is flat is likely to modify experimental evidence supporting a spherical earth to fit 

their flat earth schema.  

Schemas can also be conceptualised as task rules which inform how to solve a task. A 

notable experiment demonstrated monkeys gradually learning to choose the correct 

image out of two options. The two-image combination was replaced by two completely 

new images after six trials. The monkeys gradually learned the rule “If A was rewarded 

in previous trial, then choose A, else choose B”.  ubsequently, monkeys used this rule 

to choose the correct image after the first trial even though it was a new two-image 

combination (Harlow 1949), demonstrating one-shot learning. 

More recently, Tse and colleagues developed a two-part rodent experiment where in 

the first part, rats gradually learned the rule “ lavour X is at Location Y” to associate 

the given flavour cue with one of several reward locations. In the second part, rats only 

required a single trial to learn multiple new flavour-location associations and 

subsequently used the instantiated schema to recall the goal location corresponding to 

the flavour cue (Tse et al. 2007). 

1.1.2 Alternative theories for one-shot navigation 

An alternative theory for one-shot navigation is cognitive maps. Tolman demonstrated 

that rats which freely explored a maze were able to rapidly navigate to a newly given 

goal location using the shortest path, similar to rats that were trained to navigate to the 

goal location since the start of the experiment (Tolman 1948). This was evidence that 

rats learned a latent mental representation of the environment during their free 

exploration that allowed them to plan their trajectory once a goal was available. 

Cognitive maps have been predominantly used to explain one-shot navigation in spatial 

navigation problems, although a recent proposal suggested that cognitive maps can act 
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like memory schemas (Preston and Eichenbaum 2013) and used to solve nonspatial 

associative and transitive inference tasks (Whittington et al. 2020). Hence, cognitive 

maps could be a subset of schema since schemas have also been used to explain spatial 

navigation (Arkin 1989; Tse et al. 2007), language comprehension (Rumelhart 1975; 

Rumelhart and McClelland 1982; Rumelhart and Ortony 1977) and recognition tasks 

(Brewer and Treyens 1981; Palmer 1975; Webb and Dennis 2019). 

In summary, memory schemas offer a framework to organise new information to 

facilitate rapid learning. By composing pre-learnt schemas, it reduces the need to learn 

each task as an individual problem, allowing the system to rapidly solve novel problems 

by either adapting new information or the schema. The next section surveys algorithms 

that can be used to model memory schemas for one-shot learning. 

1.2 Algorithmic level 

Although there are several classes of algorithms that demonstrate one-shot learning, 

we will focus on algorithms that solve spatial navigation tasks where an agent needs to 

navigate to one or multiple goals and receives a reward only after reaching the correct 

goal location. 

1.2.1 Symbolic algorithm for one-shot learning 

Symbolic cognitive architectures such as SOAR (Laird, Newell, and Rosenbloom 

1987) and ACT-R (Anderson 2013; Lebiere and Anderson 1993) were developed to 

replicate the adaptive computations performed by the brain, with ACT-R focused on 

modelling brain structures and fitting model predictions to behavioural data (Borst et 

al. 2015; Fu and Anderson 2006).  

The Common Model of Cognition (Laird 2021) is a general cognitive framework which 

calls for modular systems (Fig. 1.2A) to perform specific functions. The perception 

module extracts relevant features from different input modalities and passes them to 
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the working memory module which compares the features against episodic memories 

or productions in procedural memories to determine relevant actions for the motor 

module to execute. 

Importantly, these models use learning algorithms to convert newly rewarded actions 

into chunks and are stored in procedural memory as productions. These productions or 

action strategies can be retrieved from procedural memory to solve similar tasks (Laird 

2021).  

Algorithm 1 Pseudo-code for symbolic cognitive agent to solve reinforcement 

learning task 

Initialise working memory, episodic memory, and procedural memory 

            for state in environment 

                    Extract features from input into working memory 

                    Propose operations against episodic and procedural memory  

                    Apply operation to perform based on input features 

                    Execute operation using motor module as action 

                    if state is rewarded then 

                                Store state and operation in episodic memory 

            if impasse was detected and solved then 

                    Convert sequence of operations into a new production 

                    Store production in procedural memory 

end 

 

Take the problem of choosing the correct present for a date. To simplify the problem, 

there is one state and two actions, to present either flowers F or chocolates C to date X. 

After initialising the system, the perception module extracts relevant features of your 

date X, and the working memory module will compare these features against all your 

previous dates stored in the episodic memory to recall specific episode of date X 

frowning when presented with flowers. Since gifting flowers was negatively valued, 
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the working memory module chooses the alternative action, which is to present 

chocolates. The motor module then executes a sequence of actions to gift the chocolates 

to date X. If the date is pleased, the association of this date to chocolates X–C is 

positively valued, and the sequence of actions are added to the episodic and procedural 

memory respectively. In the subsequent date, the system will recall the X–C association 

that gifting chocolates is valued higher than gifting flowers and the relevant production 

will be selected. 

Although these cognitive systems can solve problems flexibly, these computations are 

performed symbolically i.e., expert or rules-based systems that use IF-THEN 

conditions. Hence, the representations and learning processes in symbolic models are 

hard to compare against biological processes.   

1.2.2 Model-free versus model-based reinforcement learning algorithms 

Reinforcement learning (RL) algorithms were developed on the theory of operant 

conditioning where an agent learns a sequence of actions based on rewards and 

punishments (Skinner 1963). Similarly, the goal of RL is to maximise cumulative 

rewards especially in tasks with temporally sparse rewards, like the dating problem, by 

learning an optimal sequence of actions (Sutton and Barto 2020).  

A default implementation of RL is to use model-free algorithms because of their 

computational efficiency. They learn a value function that describes how rewarding the 

current states is to influence the policy that specifies the actions to take at each state. 

No further knowledge of the task is needed. When powerful function approximators 

such as deep neural networks are trained to learn value and policy functions, model-

free algorithms can supersede human performance in solving complex RL tasks (Mnih 

et al. 2015, 2016).  
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Figure 1.2. Overview of architectures and learning algorithms. A) Architecture of 

symbolic cognitive architecture with working memory, procedural memory and 

episodic memory. B) Actor-Critic architecture takes state and reward information as 

inputs to learn optimal value function. The temporal difference error is computed using 

the value function and is used to update the synaptic weights of the actor and critic. C) 

Training synaptic weights using backpropagation is to propagate the vector error from 

the last layer to the first layer. Non-local information is necessary to determine the 

weight update. D) Hebbian learning uses local presynaptic and postsynaptic neuron 

firing activity to compute the weight update while neuromodulatory factors such as 

dopamine and acetylcholine influence the direction of weight change.  

 

Value-based methods such as Q-learning and SARSA directly learn the value of actions 

in each state and the policy is to select the action with the highest value in the respective 

states. Although this algorithm converges quickly, it struggles on high dimensional 

tasks, or tasks with variable reward structures. Policy-gradient methods like 

REINFORCE learn to optimise the policy without learning a value function but show 

better convergence in high dimensional tasks, although this method is sample 
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inefficient. The Actor-Critic algorithm (Fig. 1.2B) combines the benefits of both 

techniques by iteratively learning the value function and using it to gradually learn a 

policy (Sutton and Barto 2020). Several proposals have mapped the actor-critic 

algorithm to the basal ganglia (Barto 1995; Joel, Niv, and Ruppin 2002; Niv 2009; Yin 

and Knowlton 2006). 

For the critic to learn a value function, a temporal difference (TD) error (Fig. 1.2B) is 

computed using the Bellman equation (Bellman 1954), by taking the difference 

between the critic’s value estimation of the current and future state coupled with the 

true reward structure. A corresponding policy is learned by using the TD error to assign 

credit to actions that either increase or decrease cumulative reward (Sutton and Barto 

2020). The TD error can be minimised using a variety of learning algorithms (Foster, 

Morris, and Dayan 2000; Frémaux, Sprekeler, and Gerstner 2013; Mnih et al. 2016). It 

has been suggested that the TD error is encoded by the dopamine neuromodulator as a 

reward prediction error for operant conditioning (P Read Montague, Dayan, and 

Sejnowski 1996; Niv 2009; W Schultz, Dayan, and Montague 1997), though recent 

proposals also suggest dopamine encodes other forms of reinforcement learning errors 

as well (Akam and Walton 2021; Dabney et al. 2020; Gardner, Schoenbaum, and 

Gershman 2018; Gershman 2018; Sharpe et al. 2017).  

However, model-free algorithms need to unlearn and relearn a new value function and 

policy when state transitions or reward structures change even slightly. Hence, these 

algorithms do not offer the flexibility to adapt to novel problems (Dolan and Dayan 

2013; Kansky et al. 2017).  

In contrast, model-based RL algorithms learn an internal model of the state transitions 

and reward structure of the task. Once an adequate model is learned, the algorithm can 

use this internal model to plan an optimal policy using a decision tree (Gläscher et al. 

2010) to solve novel variations of the task (Fu, Levine, and Abbeel 2016; Piray and 
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Daw 2021). Alternatively, Dyna is a hybrid model-free and model-based algorithm that 

uses the internal model to generate state transitions and rewards to update its value and 

policy functions without needing to sample from the actual task (Sutton and Barto 

2020). In this way, model-based algorithms can demonstrate one-shot learning if the 

reward structure can be learned after a single trial (Gardner et al. 2018; Momennejad 

et al. 2017). 

1.2.3 Using neural networks for function approximation 

Multi-layered neural networks can be trained to solve complex cognitive tasks, end-to-

end using backpropagation of error signals. After determining the output error, the error 

gradients specific to each synapse are computed and applied down the hierarchy of 

layers (Fig. 1.2C). Neural networks trained by backpropagation can resemble neural 

representations observed in the visual stream (Kar et al. 2019; Rajalingham et al. 2018), 

prefrontal cortex (Mante et al. 2013; Wang et al. 2018; Yang et al. 2019), entorhinal 

cortex (Banino et al. 2018; Cueva and Wei 2018), and parietal cortex (Suhaimi et al. 

2022), and may help us to understand how biological systems perform computations 

(Yang and Wang 2020). 

Neural networks can also be trained by backpropagation to read and write episodic 

memories into an external symbolic memory system (Botvinick et al. 2019) or another 

recurrent neural network (Ramsauer et al. 2020) to solve associative recall tasks 

(Graves, Wayne, and Danihelka 2014), demonstrate one-shot learning for classification 

(Ritter et al. 2018; Santoro et al. 2016) and one-shot navigation (Banino et al. 2018; 

Team et al. 2021; Wayne et al. 2018).  

However, backpropagation appears difficult or impossible to map to a biologically 

plausible learning mechanism (Lillicrap et al. 2020). This is because backpropagation 

can be nonlocal or acausal. Specifically, backpropagation uses the same weights for 

both the forward pass and backward error propagation though biological neural 
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synapses are uni-directional. Furthermore, the error gradient specific to each synapse 

is computed though this appears to have no biological counterpart. More importantly, 

the concept of time is non-existent during training as backpropagation of error happens 

instantaneously over several epochs (Hunsberger, Orchard, and Wong 2017).  Hence, 

even though representations learned using backpropagation are similar to those of the 

brain, backpropagation does not allow us to understand how biological neural circuits 

use synaptic plasticity for learning. 

Instead of backpropagation, contrastive Hebbian learning uses local firing activity and 

does not require explicit error gradients to train multi-layer neural networks (Hwu and 

Krichmar 2020). However, this requires supervised different network dynamics and 

synaptic plasticity rules in different states, which is also not biologically plausible 

although neural architecture trained by this strategy are able to demonstrate one-shot 

learning of new flavour cues and goal location paired associations.  

1.2.4 Biologically plausible learning algorithms 

Instead of using backpropagation to train the synaptic weights of artificial neural 

networks, Hebbian learning is accepted to be a biologically plausible synaptic plasticity 

rule (Fig. 1D). The synaptic connections are either strengthened or weakened based on 

the localised firing activity of the presynaptic and postsynaptic neurons. This rule is 

often heuristically stated as “ eurons that fire together, wire together”, meaning that 

the synaptic weight of neurons with correlated firing activity will strengthen. 

This theory has been experimentally validated, and expanded in some cases to Spike 

Time Dependent Plasticity (STDP) (Caporale and Dan 2008; Markram et al. 1997) 

where co-activating presynaptic and postsynaptic neurons within certain spike timing 

windows either strengthens or weakens the synaptic weights to cause long term 

potentiation (LTP) or depression (LTD) depending on the temporal order of 

presynaptic and postsynaptic activations.  
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The direction of weight update can be further modulated by global neuromodulatory 

factors (Fig. 1.2D) such as dopamine (Frémaux and Gerstner 2016; Frémaux et al. 

2013) or acetylcholine (Brzosko et al. 2017). The presynaptic activity, postsynaptic 

activity and neuromodulatory factor enter the 3-factor Hebbian plasticity rule which 

can be used to solve classification (Hoerzer, Legenstein, and Maass 2012; Lindsay et 

al. 2017; Maass, Joshi, and Sontag 2007; Miconi 2017; Xie and Seung 2004) and 

navigation problems (Arleo and Gerstner 2000; Brown and Sharp 1995; Foster et al. 

2000; Frémaux et al. 2013; Legenstein et al. 2010). 

The synaptic weights within a recurrent neural networks can also be trained using the 

Hebbian rule to store and recall patterns after a single trial (Hopfield 1982, 1984), 

replicating the pattern completion function of hippocampal CA3 system (Rolls 2013). 

However, there has been limited work on training neural networks using Hebbian 

plasticity to solve complex cognitive tasks, let alone demonstrate one-shot learning.  

1.2.5 Alternative learning strategies 

Recently, there have been alternative strategies that straddle between backpropagation 

and Hebbian rule. Some address the backward propagation of error signals by using a 

separate neural network to directly send the teaching signal to each synapse (Bellec et 

al. 2020; Lillicrap et al. 2016; Murray 2019). However, this architecture is yet to be 

experimentally validated. Others use local presynaptic and postsynaptic information 

(Bellec et al. 2019; Scherr, Stöckl, and Maass 2020), although the modulatory factor 

uses synapse specific error gradients computed using backpropagation, unlike using a 

global neuromodulatory factor. 

Another approach is to use backpropagation and a Hebbian rule to separately update 

two sets of synaptic weights. The meta-learning framework involves two training loops 

where the outer loop trains the synapses of deep neural networks using backpropagation 

while the inner loop uses a Hebbian rule to update another set of synapses to perform 
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one-trial associations (Limbacher and Legenstein 2020; Scherr et al. 2020; Whittington 

et al. 2020). However, most of the complex computations are performed by synapses 

trained using backpropagation while the network trained using a Hebbian rule only 

stores episodic memories.  

Hence, to my knowledge there are no neural network architectures that has 

demonstrated rapid learning on complex cognitive tasks with synapses trained using 

biologically plausible rules. 

1.3 Implementation level 

The implementation level looks at biological neural circuits involved in one-shot 

learning during spatial navigation. Since the focus is on learning computations, brain 

regions whose functions are more usually associated with representational 

computations such as the visual and parietal cortex are beyond the scope of the present 

discussion.  

1.3.1 Striatum for reinforcement learning 

The basal ganglia has been shown to be crucial for stimulus-response learning and 

mappings of the model-free actor-critic reinforcement learning algorithms to specific 

regions have been proposed (Barto 1995; Joel et al. 2002; Yin and Knowlton 2006). 

Typically, the ventral striatum takes in state information from the hippocampus or the 

cortex and is proposed to learn state values while the dorsal striatum learns the 

stimulus-response associations (Graybiel 2008; Lipton, Gonzales, and Citri 2019; 

 ’ oherty et al. 2004); some proposals argue that the dorsomedial striatum is involved 

in goal-directed learning (Balleine and Dickinson 1998; Yin et al. 2005). 

Synaptic plasticity in the striatum is modulated by dopamine from midbrain 

dopaminergic neurons which encode reward prediction errors (P Read Montague et al. 

1996; W Schultz et al. 1997) that reflect the difference in expected and actual reward 
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outcomes. A higher magnitude of phasic dopaminergic neuron activity represents a 

positive prediction error (Bayer and Glimcher 2005) that drives the learning of positive 

state values and assign credit to actions.  

1.3.2 Hippocampus for one-shot learning of episodic memories 

The hippocampus remains a primary region of interest when studying learning and 

memory (Eichenbaum 2004; McNaughton and Morris 1987; Moser, Rowland, and 

Moser 2015). While the dentate gyrus (DG) receives and integrates inputs from the 

cortex, the granule cells within the DG perform pattern separation to minimise overlap 

between different stimuli and convey the information to the CA3 (Rolls 2013). Both 

CA1 and CA3 encode spatial (McKenzie et al. 2 14;  ’Keefe and Dostrovsky 1971), 

non-spatial (Gulli et al. 2020) and temporal (Dragoi and Buzsáki 2006; Dragoi and 

Tonegawa 2011) variables. Most notably, CA1 and CA3 cells encoding spatial 

information are called place cells and have Gaussian tuning curves ( ’Keefe and 

Burgess 1996).   

More importantly, recurrent connectivity and synaptic plasticity within the CA3 system 

is postulated to enable it to function as an autoassociative network capable of one-shot 

association between different stimuli or rewards (Guzman et al. 2016; Rolls 2007). 

Once an associative memory is formed, when fragments of a related stimulus are given, 

the attractor dynamics within the CA3 system performs pattern completion to recall the 

entire memory (Neunuebel and Knierim 2014; Rolls 2013), similar to the Hopfield 

network. 

Newly formed episodic memories are only temporarily hippocampus-dependent, 

perhaps indicating that they are only initially stored in the hippocampus. With time, 

relevant memories are organized and permanently stored in the cortex, becoming 

hippocampus-independent through a process called memory consolidation (Squire et 

al. 2015; Yonelinas et al. 2019). These consolidated semantic memories encompass 
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knowledge frameworks or schemas that guide subsequent learning and behaviour 

(Baram et al. 2021; Van Kesteren et al. 2012; Kumaran, Hassabis, and McClelland 

2016; McClelland 2013; McKenzie and Eichenbaum 2011; Preston and Eichenbaum 

2013). Interestingly, the firing of CA1 and CA3 neurons in a novel environment are 

consistent with that of a familiar environment (Baraduc, Duhamel, and Wirth 2019; 

McKenzie et al. 2014), suggesting that the encoding of new information by the 

hippocampus is organized against the backdrop of a schema consolidated in the familiar 

environment.  

1.3.3 Entorhinal cortex for navigation 

While hippocampal place cells play a central role in learning, the entorhinal cortex 

(EC) has been shown to be necessary, particularly in spatial navigation. Entorhinal grid 

cells are also place modulated but they exhibit periodic or hexagonal grid-like firing 

activity in one-dimensional and two-dimensional mazes respectively (Hafting et al. 

2005). Place cells undergo either rate remapping or global remapping when there are 

small or significant changes in environmental cues. On the other hand, grid cell activity 

remains fairly consistent (Fyhn et al. 2007) as it is hypothesized to be solely based on 

the animal’s self-motion information (McNaughton et al. 2006) to perform path 

integration (Burak and Fiete 2009; Fuhs and Touretzky 2006; Widloski and Fiete 2014) 

and navigation to goals (Banino et al. 2018; Giocomo, Moser, and Moser 2011; Sosa 

and Giocomo 2021). Object-vector (Høydal et al. 2019) and border cells (Solstad et al. 

2008) in the  C have also been hypothesized to support the animal’s ability to self-

localise. However, it has also been suggested that grid cells alone cannot be used for 

goal directed navigation. Rather, the stability of grid fields endow the animal with an 

error-correcting mechanism to learn a separate metric representation for a more 

efficient vector-based navigation that does not require the animal to search through past 

trajectories (Bush et al. 2015; Fiete, Burak, and Brookings 2008). 
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1.3.4 Prefrontal cortex for learning schemas 

The prefrontal cortex (PFC) is crucial for learning knowledge frameworks which 

facilitate cognitive control and flexibility. The prefrontal cortex may learn abstract task 

rules or schemas (Mansouri, Freedman, and Buckley 2020) and exert top down control 

on other brain regions to facilitate efficient mappings between inputs and actions 

(Miller 2000; Miller and Cohen 2001). When encoding new information after a schema 

is learned, the angular gyrus, hippocampus and the prefrontal cortex show higher 

BOLD signals (Gilboa and Marlatte 2017) while the hippocampus shows similar spatial 

tuning (Baraduc et al. 2019), although the exact circuit mechanisms are not known. 

Studies have shown that as animals gradually learn the task rule or schema, the PFC 

neural dynamics gradually shifts from a noisy high dimensional to a low dimensional 

abstract representation to describe the critical task variables (Bernardi et al. 2020; 

Mack, Preston, and Love 2020; Mante et al. 2013; Zhou et al. 2020). This convergence 

of network dynamics also has been reported in biologically plausible networks learning 

task rules (Hoerzer et al. 2012; Miconi 2017).  

Both the anterior cingulate cortex (ACC) (Akam et al. 2021; Kennerley et al. 2006) and 

orbitofrontal cortex (OFC) (Schuck et al. 2016; Wilson et al. 2014) have been shown 

to be involved in model-based reinforcement learning where the transition statistics and 

value of actions are evaluated for goal-directed behaviour. It has also been suggested 

that the ACC monitors conflicts against the learned rule by performing error detection 

(Botvinick et al. 1999; Carter et al. 1998) and regulates behaviour for error correction 

(Bush, Luu, and Posner 2000; Devinsky, Morrell, and Vogt 1995). Instead, it has been 

suggested that since the OFC integrates information from various sensory modalities, 

hippocampus and amygdala while projecting to the striatum and ventral tegmental area 

that regulates dopamine (Rolls 2000, 2004; Rolls, Cheng, and Feng 2020), it learns task 

specific value functions and computes dopamine based prediction errors to rapidly map 
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novel information into pre-learned rules (Banerjee et al. 2020). In addition, when 

performing schema dependent tasks, studies describe a higher ventromedial PFC 

coupling to hippocampal activity to increase coordination of encoding between the two 

regions (Baram et al. 2021; Van Buuren et al. 2014; Gilboa and Marlatte 2017; Van 

Kesteren et al. 2010, 2012). 

Although some work has tried to delineate the function of each region in the PFC, there 

is increasing evidence that similar computations may happen in PFC regions (Mansouri 

et al. 2020). Hence, an alternative proposal conceives the PFC as a hierarchy of function 

instead of modular networks that perform distinct functions (Maisson et al. 2021; Riley 

et al. 2018; Stalnaker, Cooch, and Schoenbaum 2015).   

Besides learning schemas, the PFC is also known to be responsible for selectively 

attending to relevant information (Baddeley 2012; Kane and Engle 2002), maintaining 

it in working memory for further manipulation (Curtis and  ’ sposito 2  3; 

Parthasarathy et al. 2019; Wimmer et al. 2014) and planning (Ehrlich and Murray 2021; 

Hoshi and Tanji 2004; Hunt et al. 2021) such as for movement (Tang et al. 2020). PFC 

neurons are found to have mixed selectivity (linear and nonlinear) to various task 

variables (Parthasarathy et al. 2017; Rigotti et al. 2013). This increases the 

dimensionality of neural representations to improve discriminability of information by 

other brain regions (Fusi, Miller, and Rigotti 2016). Theoretical work has shown that 

the discriminability–generalisation trade-off could be balanced (Barak, Rigotti, and 

Fusi 2013), but how the PFC solves this problem is yet to be determined.  

1.4 Notable examples of one-shot learning by rodents 

In a notable water maze experiment, the task was to navigate to a hidden platform that 

was displaced to a new location every four trials. After an initial acquisition period, 

rats showed significant savings in latency between the first and second trials, even after 

the platform was displaced, demonstrating one-shot navigation to the newly displaced 
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location. Hippocampal lesions significantly affected the rats’ one-shot learning ability. 

Interestingly, blocking hippocampal NMDA receptors using D-AP5 did not show 

significant impact on one-shot learning if the trials were 15 seconds apart. However, if 

the trials were 20 minutes or 2 hours apart, rats did not demonstrate one-shot learning. 

This suggests that hippocampal plasticity was necessary to consolidate the goal 

location information into long term memory for recall after a longer interval (Steele 

and Morris 1999). Subsequent computational modelling replicated the one-shot 

learning results by developing agents that gradually learned a metric representation to 

self-localize using dead reckoning, stored goal coordinates in memory and had a 

navigation module that performed vector subtraction between the agent’s current and 

goal coordinates to decide the direction to move (Foster et al. 2000). However, goal 

coordinates were stored symbolically after a single trial, and the navigation module 

was a symbolic function. This work showed that the gradual learning of a metric 

representation and one-shot learning of goal location could underlie one-shot 

navigation to single goals.  

Tse and colleagues increased the complexity of the navigation task by developing a 

two-part multiple paired association (MPA) task. In the first part, rats were given one 

out of six possible flavour cues in the start box and had to navigate to the correct 

location in an open field arena which had six sand wells as possible reward locations. 

Rats gradually learned the Original FLAVOUR–LOCATION Paired Association 

(OPA) task over 20 sessions while hippocampal lesioned rats could not. Interestingly, 

when hippocampal lesions were introduced after learning OPA, rats were able to recall 

the correct flavour–location combination in the subsequent probe trial. By introducing 

either CNQX or D-AP5 to the prelimbic region, Tse demonstrated that the recall of 

flavour–location combinations could be blocked, suggesting that the initially 

hippocampus dependent OPA knowledge had consolidated to the prelimbic region. 
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In the second part, two of the six original flavour-location pairs were replaced with two 

New Paired Associates (NPA) and the rats trained on OPA were introduced to the two 

NPA combinations, each for a single trial. The next trial was a nonrewarded probe, but 

rats navigated to the correct NPA locations, demonstrating one-shot learning of two 

new flavour-location pairs. Hippocampal lesions and administration of D-AP5 to the 

prelimbic region prior to the learning of NPAs or administration of CNQX after 

learning NPAs affected one-shot learning of NPA. Hippocampal lesions, 3 hours 

instead of 24 hours after learning NPA affected the one-shot learning of NPA as well. 

This meant that both the hippocampus and the prelimbic regions were needed to learn 

the new flavour-location associations after a single trial and but only the prelimbic 

region was needed for recall.  

Interestingly, when the rats trained on the OPA were introduced to a New Maze (NM) 

condition with new environmental cues and flavour–location combinations, while the 

task rule of associating flavour cues to location was kept the same, rats could not learn 

and recall the six new paired associates after a single trial and took another 20 trials 

sessions to reach performance criteria. The hypothesis was that when rats were placed 

in a new environment, place cells underwent global remapping, and they could not use 

the previously learned schema to solve NM. However, the mechanism for the failure 

to demonstrate one-shot learning was not determined, though the prelimbic region was 

not as involved in encoding NM compared to when encoding the NPAs. 

1.5 Gaps in current research 

I have briefly outlined past work that characterised the general computations, 

computational models to replicate, and the brain regions involved in one-shot learning, 

before concluding with two notable animal experiments. Given this overview, there are 

still some gaps in our understanding of how the brain performs one-shot learning.  
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If the brain indeed uses schemas for efficient learning, how are schemas represented in 

the biological neural circuits? We require several schemas, each performing a different 

function. Given a symbolic description of a schema, we would further like to 

understand how neurons and synapses integrate new information for one-shot learning. 

Neuroimaging studies point to the hippocampus and the prefrontal cortex but lack the 

temporal resolution on the computations performed at each time step. Trying to 

understand the circuit narrative using electrophysiology experiments remains difficult. 

Although deep learning offers us several solutions, trying to characterise the diverse 

schema-like computations performed by a large network is difficult. Perhaps training 

smaller networks that perform a single function and fitting them modularly could give 

us insights on how different schema networks work cooperatively to solve a problem. 

Secondly, how are schemas used for learning? Schemas are formalised as knowledge 

structures with placeholders that when filled, can be used to make inference. How does 

this explain the initial gradual learning of a task? Are schemas gradually learned from 

scratch for each task or is the animal using pre-existing schemas to learn a task specific 

representation that can be generalised within the domain of the task? For example, 

Foster et al. (2000) demonstrated that agents need to gradually learn a stable metric 

representation using path integration before the agent can accurately perform vector 

subtraction to move towards the goal. Would the learning of a metric representation of 

an environment or the ability to infer direction of movement despite any goal 

information constitute as a schema? Solutions offered by backpropagation are not 

informative of how the biological circuits learn. Hence, what is the learning process 

with respect to a schema? 

To not fall into the fallacy that schemas are the way the brain demonstrates efficient 

learning, the strategy is to develop a biological model that is devoid of the hypotheses 

and assumptions of how schemas compute. Instead, the main outcome is to train neural 

network models using biologically plausible learning rules to demonstrate both gradual 
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and the subsequent one-shot learning behaviour in a complex task, such as Tse et al. 

(2007). 

In this thesis, I first describe a biologically plausible reinforcement learning agent that 

gradually learns the first part of the multiple paired associations task. Thereafter, I 

describe three neural schemas and demonstrate how their composition demonstrates 

one-shot learning of multiple new paired associations. I conclude the thesis with a 

summary of contributions, limitations, and future directions to understand how the 

brain performs one-shot learning.  
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CHAPTER 2 A nonlinear hidden layer enables actor-critic 

agents to learn multiple paired association navigation  

(Kumar et al., 2022) 

(The contents of this chapter have been published. Please refer to page VI for details.) 

Abstract 

Navigation to multiple cued reward locations has been increasingly used to study 

rodent learning. Though deep reinforcement learning agents have been shown to be 

able to learn the task, they are not biologically plausible. Biologically plausible classic 

actor– critic agents have been shown to learn to navigate to single reward locations, but 

which biologically plausible agents are able to learn multiple cue–reward location tasks 

has remained unclear. In this computational study, we show versions of classic agents 

that learn to navigate to a single reward location, and adapt to reward location 

displacement, but are not able to learn multiple paired association navigation. The 

limitation is overcome by an agent in which place cell and cue information are first 

processed by a feedforward nonlinear hidden layer with synapses to the actor and critic 

subject to temporal difference error-modulated plasticity. Faster learning is obtained 

when the feedforward layer is replaced by a recurrent reservoir network. 

2.1 Introduction 

Navigation to remembered locations is important for many animals (Healy and Hurly 

1995; Menzel and Müller 1996). Tasks like the Barnes maze and the Morris water maze 

requiring navigation to a single reward location are often used to study rodent learning 

(Barnes 1979; Hok et al. 2007; Hok, Save, and Poucet 2005; Jackson, Johnson, and 

Redish 2006; Jackson and Redish 2007; Morris et al. 1982; Rossier et al. 2000). More 

recently, there has been increasing use of a multiple paired association navigation task 

for rodents involving more than one reward location (Bethus, Tse, and Morris 2010; 
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Day, Langston, and Morris 2003; Kakeyama et al. 2014; Kesner, Hunsaker, and 

Warthen 2008; Spiers, Olafsdottir, and Lever 2018; Tse et al. 2007, 2011; Wang, Tse, 

and Morris 2012). The multiple paired association task takes place in an arena where 

the reward is hidden. Each trial starts with the animal in one of several positions at the 

arena boundary, where the animal receives one of several sensory cues, such as a 

particular odour. Each sensory cue consistently represents a possible reward location, 

and indicates where the animal must go to obtain a reward.  

Deep reinforcement learning algorithms have progressed considerably to show human 

level performance in computer games and other remarkable capabilities, and provide 

useful frameworks for interpreting brain function (Banino et al. 2018; Botvinick et al. 

2020; Dabney et al. 2020; Mnih et al. 2015, 2016; Song, Yang, and Wang 2017; Wang 

et al. 2018). However, deep reinforcement learning uses gradient descent algorithms 

that do not seem to correspond to any biologically-plausible learning rule (Botvinick et 

al. 2020). Physiological experiments suggest that synaptic plasticity in reinforcement 

learning is a function of presynaptic activity, postsynaptic activity, and globally 

available teaching signals carrying reward information (Bakin and Weinberger 1996; 

Brzosko, Mierau, and Paulsen 2 19; Brzosko,  chultz, and Paulsen 2 15;  ’amour and 

Froemke 2015; Dennis et al. 2016; Froemke, Merzenich, and Schreiner 2007; He et al. 

2015; Karachot et al. 2001; Kilgard 1998; Palacios-Filardo and Mellor 2019; Reynolds 

JNJ, Hyland BI, and Wickens JR 2001; Seol et al. 2007). Computational studies have 

successfully applied neural network agents with such biologically-plausible synaptic 

plasticity rules to a wide range of tasks (Baras and Meir 2007; Brea, Senn, and Pfister 

2013; Farries and Fairhall 2007; Fiete and Seung 2006; Frémaux and Gerstner 2016; 

Hoerzer et al. 2012; Izhikevich 2007; Legenstein et al. 2010; Legenstein, Pecevski, and 

Maass 2008; Miconi 2017; Pfister et al. 2006; Senn and Pfister 2014; Suri and Schultz 

1998, 1999; Urbanczik and Senn 2009; Xie and Seung 2004), including navigation to 

a single reward location (Arleo and Gerstner 2000; Brzosko et al. 2017; Foster et al. 
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2000; Frémaux et al. 2013; Potjans, Diesmann, and Morrison 2011; Potjans, Morrison, 

and Diesmann 2009; Vasilaki et al. 2009; Zannone et al. 2018). Here we extend 

previous work by describing agents with biologically plausible synaptic plasticity that 

learn the multiple paired association navigation task.         

We build on the classic actor-critic agents developed by Foster and colleagues, and 

Frémaux and colleagues that learn to navigate to a single reward location (Foster et al. 

2000; Frémaux et al. 2013). In the discrete-time agent of Foster and colleagues with 

rate-based neurons, place cells encoding the animal's location project to an actor that 

outputs the animal's movement, and to a critic that outputs a (estimated) value function, 

which is an estimate of the cumulative reward that may be obtained. The value function 

and reward obtained are used to calculate the temporal difference (TD) error, a reward 

prediction error encoded with various degrees of fidelity by midbrain dopamine 

neurons (P. Read Montague, Dayan, and Sejnowski 1996; W Schultz et al. 1997), 

cholinergic basal forebrain neurons (Hangya et al. 2015), and mouse cerebellar 

climbing fibers (Ohmae and Medina 2015). Plasticity in place cell to actor synapses 

obeys a TD error-modulated Hebbian rule, depending on the product of the TD error, 

presynaptic activity and postsynaptic activity. Plasticity in place cell to critic synapses 

depends on the product of the TD error and presynaptic activity. The agent of Frémaux 

and colleagues has the same architecture, but uses spiking neurons, actor neurons 

connected in a ring, TD error-modulated Hebbian plasticity for place cell to critic 

synapses, and a continuous-time TD error (Doya 2000).    

We find that although a similar classic agent learns to navigate to a single reward 

location, and adapts to displacement of the reward location after the initial learning 

(Zannone et al. 2018), it is not able to learn the multiple paired association navigation 

task. This limitation is overcome by an agent in which place cell and cue information 

do not go directly to the actor and critic, but are first processed by a nonlinear hidden 
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layer whose synapses onto the actor and critic are subject to TD error-modulated 

plasticity.       

2.2 Methods 

2.2.1 Paired association spatial navigation tasks 

In all paired association navigation tasks, an agent moves within a spatially continuous 

two-dimensional square arena bounded by walls of length 1.6 m, with possible agent 

positions 𝑥 =  ±0.8 m,±0.8 m . The agent also receives a sensory cue 𝑐 that remains 

constant throughout the trial, or that may be presented only at the start of the trial. At 

the start of each trial, the agent's internal activity is randomly initialized, with its 

position drawn with equal probability from the midpoints of the four boundary walls. 

The agent moves by executing time-dependent actions 𝑎 𝑡  that affect its velocity 

according to 

 �̇� 𝑡 =  𝑎 𝑡  (1) 

Using Euler's method of discretization with time step ∆𝑡, this results in position updates 

 𝑥 𝑡 + ∆𝑡 =  𝑥 𝑡 + 𝑎 𝑡 . ∆𝑡 (2) 

If that updated position ends up outside the arena, the agent instead moves 0.01 m 

inward perpendicular to the closest boundary from its last position. We used a time step 

of 100 ms for all simulations, but the main results have been checked to also hold at 

time steps of 20 ms, 15 ms and 5 ms.  

Across all trials for an agent, any particular sensory cue is consistently associated with 

a reward in only one of 49 possible reward locations distributed throughout the maze 

such that the centres of possible reward locations are 0.2 m from each other or a 

boundary. All possible reward locations are circles with a radius of 0.03 meters. 
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The agent is free to explore the arena for a maximum duration 𝑇𝑚𝑎𝑥 per trial. If it finds 

the reward before 𝑇𝑚𝑎𝑥, the agent remains stationary until the trial ends to model 

consummatory behavior. After the agent reaches the reward, a total reward value 𝑅 =

1 (Fig. 2.1-2.5) or 𝑅 = 4 (Fig. 2.6) is disbursed at a reward rate 𝑟 𝑡 , defined by 

 
�̇�𝑑𝑒𝑐𝑎𝑦 𝑡 = −

𝑟𝑑𝑒𝑐𝑎𝑦 𝑡 

𝜏𝑑𝑒𝑐𝑎𝑦
 ;      �̇�𝑟𝑖𝑠𝑒 𝑡 = −

𝑟𝑟𝑖𝑠𝑒 𝑡 

𝜏𝑟𝑖𝑠𝑒
   (3) 

 
𝑟 𝑡 =  

𝑟𝑑𝑒𝑐𝑎𝑦 𝑡 − 𝑟𝑟𝑖𝑠𝑒 𝑡 

𝜏𝑑𝑒𝑐𝑎𝑦 − 𝜏𝑟𝑖𝑠𝑒
 (4) 

with  𝜏𝑟𝑖𝑠𝑒 = 120 ms and 𝜏𝑑𝑒𝑐𝑎𝑦 = 250 ms. When the agent reaches the reward, 

instantaneous updates 

 𝑟𝑟𝑖𝑠𝑒 𝑡 → 𝑟𝑟𝑖𝑠𝑒 𝑡 + 𝑅;     𝑟𝑑𝑒𝑐𝑎𝑦 𝑡 → 𝑟𝑑𝑒𝑐𝑎𝑦 𝑡 + 𝑅   (5) 

are made, such that 𝑟 𝑡  integrates to 𝑅. To prevent infinitely long trials, trials in which 

the reward is reached before 𝑇𝑚𝑎𝑥 are terminated when 99.99% of the reward has been 

consumed. Trials in which the reward is not reached before 𝑇𝑚𝑎𝑥 are terminated at 

𝑇𝑚𝑎𝑥.   

2.2.2 Agent: place cells 

All agents have 49 place cells whose firing rates depend on the agent's position. The 

firing rate of the 𝑖th place cell is 

 
𝑢𝑖
𝑝𝑐 𝑡 = exp(−

 𝑥 𝑡 − 𝑥𝑖 
2

2𝜎𝑝𝑐
2 ) (6) 

with 𝜎𝑝𝑐 = 0.267 m, and place cells centres 𝑥𝑖 spaced 0.267 m apart at the intersections 

of a regular 7-by7 grid. 
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Sensory Cue 

Each cue 𝑐 is encoded by 𝑢𝑐𝑢𝑒, a one-hot vector of length 18 with gain 3, e.g. 𝑢𝑐𝑢𝑒 =

[3,0,0,0,… . ] for the first cue. The cue and 𝑢𝑐𝑢𝑒 were constant throughout each trial, 

except for the task of Fig. 2.6. In Fig. 2.6, the cue was presented briefly at the start of 

each trial as in the experiment of Tse and colleagues (Tse et al. 2007); 𝑢𝑐𝑢𝑒 was 

constant for the first 5 seconds with place cell activity and agent actions silenced to 

simulate cue presentation to the rat in the starting box with no knowledge of its position 

in the maze; the cue was then switched off, 𝑢𝑐𝑢𝑒 set to zero, and place cell activity and 

agent actions switched on for navigation; the cue reappeared and 𝑢𝑐𝑢𝑒 was reactivated 

for the time step in which the reward was found; however, results are similar without 

cue reappearance and 𝑢𝑐𝑢𝑒 reactivation.  

2.2.3 Agent: actor 

All agents have an actor of 𝑀 = 40 neurons. The firing rate of the kth actor neuron is 

 𝜌𝑘 𝑡 = 𝑅e  [𝑞𝑘 𝑡 ] (7) 

where the rectified linear unit (ReLU) activation function is  

 ReLU 𝑥 = { 
0,
𝑥,

     
𝑥 ≤ 0
𝑥 > 0

 (8) 

and the membrane potential 𝑞𝑘 has dynamics 

𝜏𝑞�̇�𝑘 𝑡 = −𝑞𝑘 𝑡 + ∑𝑊𝑗𝑘
𝑎𝑐𝑡𝑜𝑟𝑟𝑗

𝑎𝑔𝑒𝑛𝑡 𝑡 

𝑁

𝑗=1

+ ∑𝑊ℎ𝑘
𝑙𝑎𝑡𝑒𝑟𝑎𝑙𝜌ℎ 𝑡 

𝑀

ℎ=1

+ √𝜏𝑞𝜎𝑎𝑐𝑡𝑜𝑟
2𝜉 𝑡  

(9) 

with  𝜏𝑞 = 150 𝑚𝑠, and 𝜎𝑎𝑐𝑡𝑜𝑟 = 0.25. The 𝑊𝑗𝑘
𝑎𝑐𝑡𝑜𝑟 are synaptic weights for the 𝑁 

elements of 𝑟𝑗
𝑎𝑔𝑒𝑛𝑡

, which is 𝑟𝑗
𝑐𝑙, 𝑟𝑗

𝑐𝑙𝑒𝑥, 𝑟𝑗
ℎ𝑙𝑖𝑛, 𝑟𝑗

ℎ𝑛𝑙𝑖𝑛, 𝑟𝑗
𝑟𝑒𝑠 respectively for the Classic, 
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Expanded Classic, Linear Hidden Layer, Nonlinear Hidden Layer, and Reservoir 

agents. The synaptic weights 

 
𝑊ℎ𝑘

𝑙𝑎𝑡𝑒𝑟𝑎𝑙 = 
𝑤−

𝑀
+ 𝑤+

𝑓 𝑘, ℎ 

∑ 𝑓 𝑘, ℎ ℎ
 (10) 

with 𝑓 𝑘, ℎ =  1 − 𝛿𝑘ℎ 𝑒
𝜑cos  𝜃𝑘−𝜃ℎ , 𝑤− = −1, 𝑤+ = 1, and 𝜑 = 20, connect the 

actor neurons into a ring attractor that smooths the agent’s spatial trajectory. Membrane 

potential dynamics of the actor neuron were discretized with the Euler–Maruyama 

method: 

𝑞𝑘 𝑡 =  1 − 𝛼𝑞 𝑞𝑘 𝑡 − ∆𝑡 

+ 𝛼𝑞 (∑𝑊𝑖𝑗
𝑎𝑐𝑡𝑜𝑟𝑟𝑖 𝑡 − ∆𝑡 

𝑁

𝑖=1

+ ∑ 𝑊ℎ𝑘
𝑙𝑎𝑡𝑒𝑟𝑎𝑙𝜌ℎ 𝑡 − ∆𝑡 

𝑀

ℎ=1

+ √
𝜎2

𝛼𝑞
𝑁 0,1 ) 

(11) 

where 𝛼𝑞 ≡ ∆𝑡/𝜏𝑞 and N(0,1) is the standard normal distribution.  

The 𝑘th actor neuron represents a spatial direction 𝜃𝑘 = 2𝜋𝑘 𝑀⁄ , and the action.  

 𝑎 𝑡 =  
𝑎0

𝑀
∑𝜌𝑘

𝑘

 𝑡 [sin𝜃𝑘 , cos 𝜃𝑘] (12) 

is the vector sum of directions weighted by each actor neuron's firing rate, with 𝑎0 =

0.03 translating to the agent moving at about 0.7 ms-1.  

2.2.4 Agent: critic 

All agents have a critic neuron whose firing rate is 

 𝑣 𝑡 =  e  [𝜍𝑘 𝑡 ] (13) 
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where the membrane potential 𝜍𝑘 has dynamics 

 

𝜏𝑐𝜍̇𝑘 𝑡 = −𝜍𝑘 𝑡 + ∑𝑊𝑗𝑘
𝑐𝑟𝑖𝑡𝑖𝑐𝑟𝑗

𝑎𝑔𝑒𝑛𝑡 𝑡 

𝑁

𝑗=1

+ √𝜏𝑐𝜎𝑐𝑟𝑖𝑡𝑖𝑐
2𝜉 𝑡  (14) 

where 𝜏𝑐 = 150 𝑚𝑠, 𝜎𝑐𝑟𝑖𝑡𝑖𝑐 = 0.0005, and 𝑊𝑗𝑘
𝑐𝑟𝑖𝑡𝑖𝑐 are synaptic weights for 𝑟𝑗

𝑎𝑔𝑒𝑛𝑡
. 

The membrane potential dynamics of the critic neuron are discretized with the Euler–

Maruyama method: 

 𝜍𝑘 𝑡 =  1 − 𝛼𝑐 𝜍𝑘 𝑡 − ∆𝑡 

+ 𝛼𝑐 (∑𝑊𝑗𝑘
𝑐𝑟𝑖𝑡𝑖𝑐𝑟𝑗 𝑡 

𝑁

𝑗=1

+ √
𝜎𝑐𝑟𝑖𝑡𝑖𝑐

2

𝛼𝑐
𝑁 0,1 ) 

(15) 

where 𝛼𝑐 ≡ ∆𝑡/𝜏𝑐. 

2.2.5 Input to the actor and critic neurons 

We studied five agent architectures, which differ according to how the input to the actor 

and critic neurons 𝑟𝑎𝑔𝑒𝑛𝑡 is computed;  𝑟𝑎𝑔𝑒𝑛𝑡 is 𝑟𝑗
𝑐𝑙, 𝑟𝑗

𝑐𝑙𝑒𝑥, 𝑟𝑗
ℎ𝑙𝑖𝑛, 𝑟𝑗

ℎ𝑛𝑙𝑖𝑛, 𝑟𝑗
𝑟𝑒𝑠 

respectively for the Classic, Expanded classic, Linear Hidden Layer, Nonlinear Hidden 

Layer, and Reservoir agents.  

The activity of the 49 place cells and the encoded sensory cue of length 18 are 

concatenated to form an input vector 

 𝑢 𝑡 = [𝑢𝑝𝑐(𝑥 𝑡 ), 𝑢𝑐𝑢𝑒 𝑡 ] (16) 

with a length of 67.  

For the Classic agent,  

 𝑟𝑐𝑙 𝑡 = 𝑢 𝑡  (17) 
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is passed to the 40 actor neurons and the critic neuron, with their synaptic weights 

constituting 2,747 trainable parameters. 

For learning single reward locations, the Expanded classic agent is a variant of the 

Classic agent in which 16 copies of the activity of the 49 place cells and the encoded 

sensory cue of length 18 are concatenated as   

𝑟𝑐𝑙𝑒𝑥 𝑡 = [𝑢, 𝑢, 𝑢, 𝑢, 𝑢, 𝑢, 𝑢, 𝑢, 𝑢, 𝑢, 𝑢, 𝑢, 𝑢, 𝑢, 𝑢, 𝑢 ] (18) 

to form a vector of length 1,072 that was passed to the 40 actor neurons and the critic 

neuron, with their synaptic weights constituting 43,952 trainable parameters. For 

learning multiple PAs, the Expanded classic agent was made up of 123 concatenated 

copies of place cell activity and the encoded sensory cue, so that there were 337,881 

trainable parameters. 

In the Linear Hidden Layer agent and the Nonlinear Hidden Layer agent, place cell 

activity and the encoded sensory cue are passed to a hidden layer, whose activity is 

then passed to the actor and critic neurons. The firing rates of the hidden layer neurons 

in the Linear Hidden Layer agent are  

 

𝑟𝑗
ℎ𝑙𝑖𝑛 𝑡 = 𝐴 (∑𝑊𝑖𝑗

𝑖𝑛𝑢𝑖 𝑡 

𝑀

𝑖=1

)        (19) 

with the linear hidden layer gain 𝐴 = 0.2 to keep firing rates largely between -1 and 1. 

The firing rates of the hidden layer neurons in the Nonlinear Hidden Layer agent are 

 

𝑟𝑗
ℎ𝑛𝑙𝑖𝑛 𝑡 = ReLU [∑𝑊𝑖𝑗

𝑖𝑛𝑢𝑖 𝑡 

𝑀

𝑖=1

]   (20) 

Hidden layers had 1024 units when learning single reward locations, and or 8192 units 

when learning multiple PAs. The synaptic weights 𝑊𝑖𝑗
𝑖𝑛 from the input vector to the 
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hidden layer were drawn from a uniform distribution between [-1,1], and not subject to 

synaptic plasticity. Only the synaptic weights from the hidden layer to the actor and 

critic units were subject to synaptic plasticity, such that that there were 41,984 and 

335,872 trainable parameters respectively for learning single reward locations and for 

learning multiple PAs. 

In Fig. 2.5, in addition to ReLU, other nonlinear functions for the hidden layer neurons 

are studied, including Leaky ReLU (LReLU) (Maas, Hannun, and Ng 2013), 

exponential linear unit (ELU) (Clevert, Unterthiner, and Hochreiter 2016), softplus 

(Glorot, Bordes, and Bengio 2011), hyperbolic tangent (tanh), sigmoid (logistic), and 

two nonlinear activation functions 

 𝜙𝐴 𝑥, 𝜃 = { 
0,
𝑥,

     
𝑥 ≤ 𝜃
𝑥 > 𝜃

 (21a) 

and 

 𝜙𝐵 𝑥, 𝜃 = { 
𝜃,
𝑥,

     
𝑥 ≤ 𝜃
𝑥 > 𝜃

 (21b) 

The nonlinear activation functions 𝜙𝐴 and 𝜙𝐵 are identical to ReLU when 𝜃 = 0. In 

the Reservoir agent of Fig. 2.6, place cell activity and the sensory cue are encoded in 

𝑢𝑤𝑚 (Eq. 30), which is passed to the reservoir of recurrently connected neurons, whose 

activity is then passed to the actor and critic neurons. The firing rates of the reservoir 

neurons are  

 𝑟𝑗
𝑟𝑒𝑠 𝑡 = 𝜙𝐴[𝑥𝑗 𝑡 , 𝜃 = 3] (22) 

and the membrane potential 𝑥𝑗 were described by  
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𝜏𝑟𝑥�̇� 𝑡 =  −𝑥𝑗 𝑡 + ∑𝑊𝑖𝑗
𝑖𝑛𝑢𝑖

𝑤𝑚 𝑡 

𝑀

𝑖=1

+ 𝜆 ∑ 𝑊ℎ𝑗
𝑟𝑒𝑐tanh[𝑥ℎ 𝑡 ]

𝑁

ℎ=1

+ √𝜏𝑟𝜎𝑟𝑒𝑠
2𝜉 𝑡  

(23) 

with 𝜆 = 1.5, 𝜏𝑟 = 150 𝑚𝑠, and 𝜎𝑟𝑒𝑠 = 0.025. The synaptic weights 𝑊𝑖𝑗
𝑖𝑛 are drawn 

from a uniform distribution between [-1, 1];  𝑊ℎ𝑗
𝑟𝑒𝑐 are drawn from a Gaussian 

distribution with mean 0 and variance 1/𝑝𝑁 with connection probability p = 1. These 

synaptic weights are not subject to synaptic plasticity. Only the synaptic weights from 

the reservoir to the actor and critic units were subject to synaptic plasticity. The 

membrane potential dynamics of the reservoir neurons were discretized with the Euler–

Maruyama method:  

 𝑥𝑗 𝑡 =  1 − 𝛼𝑟 𝑥𝑗 𝑡 − ∆𝑡 

+ 𝛼𝑟 (∑𝑊𝑖𝑗
𝑖𝑛𝑢𝑖

𝑤𝑚 𝑡 − ∆𝑡 

𝑀

𝑖=1

+ 𝜆 ∑ 𝑊ℎ𝑗
𝑟𝑒𝑐tanh[𝑥ℎ 𝑡 − ∆𝑡]

𝑁

𝑗′=1

+ √
 𝜎𝑟𝑒𝑠

𝛼𝑟
𝑁 0,1 ) 

(24) 

All trainable parameters in all agents were initialized at zero before learning. 

2.2.6 Working memory 

In Fig. 2.6, the sensory cue is presented only briefly, and working memory is needed 

to maintain a neural representation of the sensory cue. We implemented the working 

memory with a bump attractor (Parthasarathy et al. 2019; Wimmer et al. 2014). There 

are 𝑁𝑏𝑢𝑚𝑝 = 54 bump attractor neurons. The firing rate of a bump attractor neuron is 

given by  
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 𝑢𝑗
𝑏 𝑡 =  e   [𝑥𝑏

𝑗 𝑡 ] (25) 

where the membrane potential 𝑥𝑗
𝑏 has dynamics 

𝜏𝑏�̇�𝑗
𝑏 𝑡 =  −𝑥𝑗

𝑏 𝑡 + ∑ 𝑊𝑖𝑗
𝑖𝑛𝑤𝑚𝑢𝑖

𝑐𝑢𝑒 𝑡 

𝑀𝑐𝑢𝑒

𝑖=1

+ ∑ 𝑊ℎ𝑗
𝑏𝑢𝑚𝑝

𝜔

𝑁𝑏𝑢𝑚𝑝

ℎ=1

[𝑥ℎ
𝑏 𝑡 ] + √𝜏𝑏𝜎𝑏𝑢𝑚𝑝

2𝜉 𝑡  

(26) 

with 𝜏𝑏 = 150 ms, 𝜎𝑏𝑢𝑚𝑝 = 0.1, and nonlinear activation function  

 

𝜔 𝑥 = {

0,

𝑥2,

√2𝑥 − 0.5,

     
𝑥 < 0

0 < 𝑥 ≤ 0.5
𝑥 > 0.5

 (27) 

The bump attractor neuron membrane potential dynamics were discretized with the 

Euler–Maruyama method: 

 𝑥𝑗
𝑏 𝑡 =  1 − 𝛼𝑏 𝑥𝑗

𝑏 𝑡 − ∆𝑡 

+ 𝛼𝑏 (∑𝑊𝑖𝑗
𝑖𝑛𝑤𝑚𝑢𝑐𝑢𝑒

𝑖 𝑡 − ∆𝑡 

𝑀

𝑖=1

+ ∑ 𝑊ℎ𝑗
𝑏𝑢𝑚𝑝

𝜔

𝑁𝑏𝑢𝑚𝑝

ℎ=1

[𝑥ℎ
𝑏 𝑡 − ∆𝑡 ] + √

𝜎𝑏𝑢𝑚𝑝
2

𝛼𝑏
𝑁 0,1 ) 

(28) 

The synaptic weights 

 
𝑊ℎ𝑗

𝑏𝑢𝑚𝑝
= 

𝑤−

𝑁𝑏𝑢𝑚𝑝
+

𝑓 𝑘, ℎ 

∑ 𝑓 𝑘, ℎ ℎ
 (29) 

with 𝑓 𝑗, ℎ = 𝑒𝜑cos  𝜃𝑗−𝜃𝜀 , 𝑤− = −0.75, and 𝜑 = 300, connected the neurons in a 

ring. Since each of the 18 cues was encoded as a one-hot vector, the 𝑊𝑖𝑗
𝑖𝑛𝑤𝑚 are 
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specified such that each cue activated three adjacent units in the ring, and the total 

strength of the weights for each cue passed to the bump attractor was 1. 

For all agents in Fig. 2.6, the bump attractor activity is concatenated with the place cell 

activity and encoded sensory cue to form the input vector 

 𝑢𝑤𝑚 𝑡 = [𝑢𝑝𝑐(𝑥 𝑡 ), 𝑢𝑐𝑢𝑒 𝑡 , 𝑢𝑏  𝑡 ] (30) 

2.2.7 Continuous temporal difference error and synaptic plasticity 

The output of the critic 𝑣 𝑡  and the reward 𝑟 𝑡  are used to define the continuous TD 

error (Doya 2000; Frémaux et al. 2013; Jordan, Weidel, and Morrison 2019) 

 
𝛿 𝑡 = 𝑟 𝑡 + �̇� 𝑡 −

1

𝜏𝑔
𝑣 𝑡  (31) 

As noted by Doya (Doya 2000), discretization by substituting �̇� 𝑡 ≈  𝑣 𝑡 −

 𝑣 𝑡 − ∆𝑡   /∆𝑡 together with approximating reward and critic output by their values 

at the end of the time interval used for approximating �̇� 𝑡 , i.e. 𝑟 𝑡 ≈  𝑟 𝑡  and 𝑣 𝑡 ≈

 𝑣 𝑡 ,  gives 

 
𝛿 𝑡 = 𝑟 𝑡 +

1

∆𝑡
[ 1 − 𝛼 𝑣 𝑡 − 𝑣 𝑡 − ∆𝑡 ]  (32) 

where 𝛼 = ∆𝑡 𝜏𝑔⁄ , which has the same form as the discrete time TD error  

 𝛿𝑑 𝑡 = 𝑟 𝑡 + 𝛾 ∙ 𝑣𝑑 𝑡 − 𝑣𝑑 𝑡 − 1   (33) 

if we take 𝛾 = 1 −
∆𝑡

𝜏𝑔
 and 𝑣𝑑 = 𝑣 ∆𝑡⁄ . Alternatively, discretization by substituting 

�̇� 𝑡 ≈  𝑣 𝑡 + ∆𝑡 −  𝑣 𝑡   /∆𝑡 together with approximating reward and critic output 

by their values at the start of the time interval used for approximating �̇� 𝑡 , i.e. 𝑟 𝑡 ≈

 𝑟 𝑡 − ∆𝑡  and 𝑣 𝑡 ≈  𝑣 𝑡 − ∆𝑡   gives     
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𝛿 𝑡 = 𝑟 𝑡 − ∆𝑡 +

1

∆𝑡
[𝑣 𝑡 −  1 + 𝛼 𝑣 𝑡 − ∆𝑡 ]  (34) 

We used 𝜏𝑔 = 2000 ms (equivalent to 𝛾 = 0.95). Figures and analyses in this chapter 

are from simulations in which the continuous TD error was implemented using Eq. 34. 

Simulations using Eq. 32 gave similar results with time steps of 50 ms, 20 ms and 5 

ms. 

Synaptic plasticity of the weights onto the critic are governed by a 2-factor rule, being 

modulated by the continuous TD error and the presynaptic firing rate (Foster et al. 

2000; Sutton and Barto 2020): 

 �̇�𝑐𝑟𝑖𝑡𝑖𝑐 𝑡 = 𝜂𝑐𝑟𝑖𝑡𝑖𝑐 ∙ 𝑟𝑗 𝑡 ∙ 𝛿 𝑡  (35) 

which we discretized using Euler's method: 

𝑊𝑐𝑟𝑖𝑡𝑖𝑐 𝑡 = 𝑊𝑐𝑟𝑖𝑡𝑖𝑐 𝑡 − ∆𝑡 + ∆𝑡 ∙ 𝜂𝑐𝑟𝑖𝑡𝑖𝑐 ∙ 𝑟𝑗 𝑡 ∙ 𝛿 𝑡   (36) 

Synaptic plasticity of the weights onto the actor are governed by a 3-factor rule, being 

modulated by the continuous TD error, the presynaptic firing rate, and the postsynaptic 

firing rate (Foster et al. 2000; Frémaux et al. 2013; Sutton and Barto 2020):  

 �̇�𝑎𝑐𝑡𝑜𝑟 = 𝜂𝑎𝑐𝑡𝑜𝑟 ∙ 𝑟𝑗 𝑡 ∙ 𝜌𝑘 𝑡 ∙ 𝛿 𝑡  (37) 

which we discretized using Euler's method:  

 𝑊𝑎𝑐𝑡𝑜𝑟 𝑡 =  𝑊𝑎𝑐𝑡𝑜𝑟 𝑡 − ∆𝑡 + ∆𝑡 ∙ 𝜂𝑎𝑐𝑡𝑜𝑟 ∙ 𝑟𝑗 𝑡 ∙ 𝜌𝑘 𝑡 ∙ 𝛿 𝑡  (38) 

The learning rates used for 𝜂𝑐𝑟𝑖𝑡𝑖𝑐 and 𝜂𝑎𝑐𝑡𝑜𝑟 were chosen using grid search to optimize 

speed and consistency of learning for a single reward location. When the same learning 

rates were used for the multiple PA task, the agent got stuck in corners. Hence, the 

learning rates for the multiple PA task were gradually reduced from those used in the 



 - 37 -  

 

single reward location task until successful learning was achieved. For the single 

reward location task, learning rates were 0.015 for the classic agent, 0.0005 for the 

Expanded classic and Linear Hidden Layer agents, and 0.0001 for the Nonlinear 

Hidden Layer and Reservoir agents. For the multiple paired association navigation task, 

learning rates were 0.001 for the Classic agent, and 0.00001 for the Expanded Classic, 

Linear Hidden Layer, Nonlinear Hidden Layer, and Reservoir agents. 

2.2.8 Generation of value and policy maps 

 ach agent’s trajectory was binned into a 15 × 15 square grid that covered the maze’s 

dimensions. Spatial value maps were generated from the critic's firing rate. The mean 

critic firing rate at each bin was computed for the duration of the cue-probe trial over 

all iterations and visualized as a heatmap. Spatial policy maps were generated from the 

actor's action 𝑎 𝑡 . The vector sum of the action at each bin was computed for the 

duration of the cue-probe trial over all iterations and visualized as a quiver plot. 

2.2.9 Hidden layer activity dimensionality  

A random sequence of 500 input vectors, each drawn independently from the input 

vectors corresponding to all possible combinations of one location from a grid of 2500 

possible locations within the arena and one of the 18 possible sensory cues, were 

provided as inputs to a hidden layer with a variable number of neurons and activation 

functions. Principal components analysis (PCA) was performed on the corresponding 

hidden layer output sequence. Dimensionality was estimated as the number of principal 

components needed to explain 95% of the variance. 

2.2.10 Data availability 

Code for our results is available at https://github.com/mgkumar138/TDHL_6PA. As 

stated in the Introduction, deep RL algorithms can learn the multiple paired association 

https://github.com/mgkumar138/TDHL_6PA


 - 38 -  

 

navigation task. As their performance on this specific task has not been reported, we 

have also included code for training A2C, a deep RL algorithm, on the task. 

2.3 Results 

We first verify the ability of four actor-critic agents, the Classic, Expanded Classic, 

Linear Hidden Layer, and Nonlinear Hidden Layer agents, to learn the single reward 

location task, as well as a variant task requiring adaptation to displacement of the single 

reward location after the initial learning. We then study their performance on a version 

of the multiple paired association task in which the sensory cue indicating the reward 

location is present throughout each trial, and find that only the Nonlinear Hidden Layer 

agent is able to learn the task. We visualize the different policy and value maps learned 

by the Classic and Nonlinear Hidden Layer agents, and characterize the effect of agent 

hyperparameters on learning. Finally, we demonstrate that a bump attractor to provide 

working memory can be integrated with the Nonlinear Hidden Layer agent or to a 

reservoir agent, a variant of the Nonlinear Hidden Layer agent, to learn a version of the 

multiple paired association task that resembles the biological experiments more 

closely, with the sensory cue presented only at the start of each trial.    

2.3.1 Learning to navigate to a single reward location 

We begin by verifying that the agents can learn to navigate to a single reward location, 

located in the north-west corner of the maze (Fig. 2.1A). In each trial, the agent starts 

at a randomly chosen midpoint of the north, south, east, or west boundaries of a 1.6 m2 

square arena. The agent then receives the same sensory cue on every timestep until it 

reaches the reward location. The next trial begins with the starting point selected 

randomly from one of the midpoints. 

All the agents have rate-based neurons. Agents receive input from place cells that 

encode the animal's location and encoded information about the presence and identity 

of the sensory cue. They have an actor made up of neurons connected in a ring whose 
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output dictates the speed and direction of agents (see Methods). They also have a critic 

whose output is the value function. The value function and reward obtained by the 

agent are used to calculate the temporal difference (TD) error. Only synapses connected 

to the actor and the critic are plastic. Plasticity at synapses connected to the actor obeys 

a TD error-modulated Hebbian rule, depending on the product of the TD error, 

presynaptic activity and postsynaptic activity. Plasticity at synapses connected to the 

critic depends on the product of the TD error and the presynaptic activity. 

In the Classic agent (Fig. 2.1A), place cells and cue cells encoding sensory information 

project directly onto the actor and critic neurons. In the Expanded Classic agent (Fig. 

2.1A), place cells and cue cells also project directly onto the actor and critic, but there 

are multiple copies of each connection onto the actor and critic, each with its own 

plastic synapse; this creates a variant of the Classic agent without a hidden layer, but 

with the same number of trainable parameters as the agents with a hidden layer. In the 

Linear Hidden Layer agent (Fig. 2.1B) and the Nonlinear Hidden Layer agent (Fig. 

2.1B), place cell and cue information do not go directly to the actor and critic, but are 

first processed by a hidden layer whose neurons synapse onto the actor and critic. 

Please see the Methods section for details. 
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Figure 2.1. Classic and Nonlinear Hidden Layer agents learn single reward 

locations equally well. (A) Schematic of arena and classic agent. The single reward 

location (green) is in the north-west corner of the maze and the activity of the place 

cells (centred on grey circles) represent agent position (purple). Place cell activity, 

𝑢𝑝𝑐 𝑡 , and encoded cue information, 𝑢𝑐𝑢𝑒 𝑡 , are passed directly to the actor (whose 

global inhibition and local excitation connection structure are shown in the blue and 

green lines, respectively) and critic, whose respective outputs are agent velocity, 𝜌 𝑡 , 

and an (estimated) value function, v(t) (see Methods). The value function and reward, 

𝑟 𝑡 , obtained by the agent are used to calculate the TD error, 𝛿 𝑡 , which modulates 

synaptic plasticity (shown in the green arrows). Only the red connections are plastic. 

(B) The Nonlinear Hidden Layer agent has an architecture similar to that of the classic 

agent, except that place cell and cue information do not go directly to the actor and 

critic, but are first processed by a hidden layer whose neurons synapse onto the actor 

and critic. (C) Mean latency to reach the reward location versus trial number (200 

simulations per agent type, shaded area indicates 25th and 75th quantiles) for different 

types of agents (see legend in D). Three sets of six probe trials (labelled as PT1, PT2, 

and PT3) were used to assess learning progress. (D) Mean time spent near the reward 

location in non-rewarded probe trials (200 simulations per agent type, error bars are 
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standard errors). (E) Trajectories (truncated when the reward location is reached) of a 

classic agent (left) and a Nonlinear Hidden Layer agent (right) on the first trials of PT1 

(light grey), PT2 (dark grey) and PT3 (green). Crosses and squares indicate an agent’s 

start and end location respectively. 

 

All agents, except the control Classic agent without plasticity, learned to navigate to 

the single reward location comparably well. This was demonstrated by the decrease in 

latency in reaching the single reward location over 42 trials (Fig. 2.1C). Their learning 

was also seen with the probe trials that occurred on trials 7–12 (PT1), 25–30 (PT2), 

and 55–60 (PT3). In a probe trial, no reward was given even if the agent reached the 

correct reward location. Agent plasticity was switched off, and the trial ends after 60 

seconds, allowing one to determine whether the amount of time an agent spent near the 

reward location increased with learning. All agents, except the control agent, spent 

similarly increasing amounts of time near the reward location across probe trials (Fig. 

2.1D). Example Classic and Nonlinear Hidden Layer agents both showed more direct 

movement to the reward location in later probe trials (Fig. 2.1E, green trajectory). They 

also showed value maps with higher values that were more concentrated near the 

reward location, and policy maps that were more directed toward the reward location 

in later probe trials (Supplementary Fig. 2.1A). 

2.3.2 Learning to navigate to a displaced reward location 

In a variant of the single reward location task, the reward location is displaced on 

subsequent trials. The variant task can be learned by biologically-plausible 

reinforcement learning agents (Zannone et al. 2018), including a classic actor-critic 

agent (Foster et al, 2000). Previous work did not characterize how performance varies 

with degree of displacement, which we here describe for the various actor-critic agents. 

After the 42 trials in which an agent has learned the first reward location, it continues 

with 42 more trials with either the original cue-reward location pair (Reward Location 
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1), or a new cue-reward location pair in which the reward location is displaced by an 

integer multiple of 0.28 m along the diagonal (Reward Locations 2–7; Fig. 2.2A).  

We again gauged learning by the amount of time each agent spent near the reward 

location during probe trials, which occurred on trials 7–12 (PT4), 25–30 (PT5), and 

55–60 (PT6) after displacement of the reward location; PT4, PT5, and PT6 may thus 

be compared with PT1, PT2, and PT3, respectively. For the case in which the reward 

location was not displaced, all agents with plasticity continued to increase the amount 

of time spent near the reward location from PT3 (Fig. 2.1D) to PT6. For the displaced 

reward locations, all agents spent increasing amounts of time near the reward location 

from PT4 to PT6 (Fig. 2.2B–D). For all agents, the closer the displaced reward location 

was to the original reward location, the sooner the agent reached a given level of 

performance measured by time spent near the reward location. Compared with their 

performance on the original reward location at PT3, all agents reached comparable or 

better performance at PT6 for reward locations 1–4, and worse performance for reward 

locations 5–7. The higher performance with more trials for Reward Locations 1–4 is 

reflected in example Classic and Nonlinear Hidden Layer agents having value maps 

with higher values more concentrated near the displaced reward location, and policy 

maps that were more directed toward the displaced reward location in later probe trials 

(Fig. 2.2E, Supplementary Fig. 2.1B–D). The higher performance for smaller 

displacements of the reward location can also be seen in the trajectories of both 

example Classic and Nonlinear Hidden Layer agents (Fig. 2.2F). 

 



 - 43 -  

 

 

Figure 2.2. Learning to navigate to a displaced reward location depends on the 

degree of displacement. (A) Original and displaced reward locations numbered 1–7. 

(B)–(D) Mean time spent near displaced reward locations during non-rewarded probe 

trials PT4, PT5, and PT6. PT1, PT2, and PT3 performance from Fig. 2.1D included as 

an inset to compare relearning performance against PT4, PT5, and PT6. (E) 

Superimposed value (colour) and policy (small white arrows) maps of example Classic 

(top) and Nonlinear Hidden Layer (bottom) agents on the first trials of PT4, PT5, and 

PT6. (F) Trajectories (truncated when the reward location is reached) of a Classic agent 

(top) and a Nonlinear Hidden Layer agent (bottom) on the first trials of PT6 for 

displaced Reward Locations 2 (blue), 4 (purple), and 7 (red). Crosses and squares 

indicate an agent’s start and end location respectively. 
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Earlier work with biologically-plausible reinforcement learning agents that did not 

have an actor-critic structure showed that positive and negative modulation of synaptic 

plasticity, compared against purely positive modulation, accelerated adaptation to 

displaced reward locations (Zannone et al. 2018). In the actor-critic agents we studied, 

the TD error similarly provided positive and negative modulation of synaptic plasticity 

that aided adaptation to displaced reward locations. This is seen in the example TD 

error maps for probe sessions, which have a negative trace value at the original reward 

location, where the agent had learned to expect reward but did not receive it 

(Supplementary Fig. 2.1A–D).  

2.3.3 Learning multiple paired association navigation 

Having shown that both Classic and the Nonlinear Hidden Layer agents learned the 

single reward location task, we subsequently compared their ability to learn a multiple 

paired association navigation task using six cue-reward location pairs. During each 

trial, one of the cues was presented throughout, and the agent received a reward only if 

it reached the correct reward location (Fig. 2.3A, bottom). Training was organized into 

sessions, each consisting of six trials across which the agent was exposed to six cues in 

random order (Fig. 2.3A, top). 

Learning rates were reduced for this task (see Methods), as the learning rates used in 

the single reward location task did not allow all paired associations to be learned. The 

Linear and Nonlinear Hidden Layer agents had 8192 hidden units, while the Expanded 

Classic agent had a comparable number of plastic synaptic weights that were 

redundantly connected between the input neurons and the actor and critic neurons (see 

Methods); the Classic and the control agents had the same number of plastic synaptic 

weights as in the single reward location task. 
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Figure 2.3. Only Nonlinear Hidden Layer agents learned a multiple paired 

association navigation task. (A) Bottom: Schematic of multiple paired association 

navigation task with six cue-reward location pairs, and a hidden layer agent. Top: In 

each session all six cues were presented in random order, with a different cue in each 

trial. (B) Mean latency across all trials in a session to reach the correct reward location 

versus session number (200 simulations per agent, shaded area indicates 25th and 75th 

quantiles). Ratio of time spent near the correct cue-reward location compared to the 

other 5 reward locations during non-rewarded probe session PS1, PS2, and PS3. (C) 

Mean visit ratios in probe sessions with 1 probe trial per cue-reward pair.  tudent’s t 

test performed against chance performance of 16.7% showed that only the Nonlinear 

Hidden Layer agent showed above chance performance (p < 0.001).  (D) Example 
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agent trajectories in PS3 (truncated when the reward location was reached) where each 

trace colour corresponds to the cued reward location the agent has to navigate to e.g. 

green trace corresponds to cue 1 reward location in the top left of the maze. Crosses 

and squares indicate an agent’s start and end location respectively. 

 

Figure 2.3B shows the latency required to reach the reward across sessions, averaged 

across all trials in each session. The latency of all plastic agents decreased below that 

of the control. The Classic, Expanded Classic and Linear Hidden Layer agents' 

latencies plateaued at 110 seconds, while the Nonlinear Hidden Layer agent's latency 

decreased to 13 seconds. 

Figure 2.3C shows the visit ratio on non-rewarded Probe Sessions (PS) 10, 45 and 80. 

An agent's visit ratio was the time it spent within 0.1 m of the centre of the correct 

reward location, divided by the time it spent within 0.1 m of any of the six possible 

reward locations. A visit ratio of 16.7% was consistent with chance performance, where 

the agent visited all reward locations equally, but might also be due to the agent visiting 

a particular reward location regardless of cue. Although the Classic, Expanded Classic 

and Linear Hidden Layer agents exhibited modest decreases in latencies, their visit 

ratios were consistent with chance performance. In contrast, the Nonlinear Hidden 

Layer agent showed above chance (p < 0.0001) visit ratios in all probe sessions, and 

improved from PS1 to PS2 to PS3. 
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Figure 2.4. Nonlinear Hidden Layer agent learns distinct value and policy maps 

for each PA. (A) Full trajectories of example Classic and Nonlinear Hidden Layer 

agents for each of the six different cues during non-rewarded probe sessions. Crosses 

and squares indicate an agent’s start and end location respectively. (B)–(C) 

Superimposed value (colour) and policy (small white arrows) maps for example Classic 

(B) and Nonlinear Hidden Layer (C) agents during non-rewarded probe sessions 

(averaged over 200 simulations per agent).  
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Trajectories of example Classic and Linear Hidden Layer agents suggested that they 

learned to avoid the arena boundaries where there were no rewards, and spent more 

time near the centre of the maze in the vicinity of all reward locations, which may 

explain how latency can decrease without preferential visits to the correct reward 

location (Fig. 2.3D, 4A). In contrast, an example Nonlinear Hidden Layer agent moved 

more directly to the correct reward location for each cue (Fig. 2.3D, 4A). Similarly, an 

example Classic agent learned value maps with a broad peak of high values near the 

arena centre encompassing many cues and policy maps directed away from the arena 

boundary; similar maps were learned for different cues (Fig. 2.4B). In notable contrast, 

an example Nonlinear Hidden Layer agent learned different maps for different cues, 

with value maps more concentrated near, and policy maps more exclusively directed 

towards, the correct reward location for each cue (Fig. 2.4C).    

The Classic, Expanded Classic, and Linear Hidden Layer agents did not exhibit above 

chance performance on the multiple paired association task, despite varying learning 

rates (Classic: from 0.01 to 0.0001; Expanded Classic and Linear Hidden Layer: from 

0.0001 to 0.000001) and Linear Hidden Layer gain (from 0.1 to 1), or increasing the 

number of training sessions to 500. While we were not able to exclude the possibility 

that the Classic, Expanded Classic or Linear Hidden Layer agents might succeed in 

other parameter regimes, these results suggested that adding a Nonlinear Hidden Layer 

enabled actor-critic agents to learn a multiple paired association task more robustly. 

2.3.4 Critical hyperparameters for learning multiple paired associates  

A nonlinear hidden layer may facilitate some algorithms by generating a higher 

dimensional representation of its input (Buonomano and Maass 2009; Litwin-Kumar 

et al. 2017; Cayco-Gajic and Silver 2019). We therefore examined the effect of 

hyperparameters that affects hidden layer output dimensionality: the number of hidden 

units, hidden unit activation function, and distribution of excitatory and inhibitory 
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synaptic weights onto hidden units. In this section, we used a version of the multiple 

paired association navigation task with 16 cue-reward pairs (Fig. 2.5A). We increased 

the number of cue-reward pairs from 6 (in previous sections) to 16 (in this section) to 

investigate whether particular hyperparameter choices would enable an agent to learn 

more associations. Agents were trained for 100 sessions, with sixteen trials per session, 

and a non-rewarded probe session conducted at Session 101. Example trajectories and 

the value and policy maps after learning 16 associations using ∅𝐴 = 3 and 8192 hidden 

units are shown in Figure 2.5B–C. We arbitrarily defined a cue-reward pair to have 

been learned if an agent achieved a visit ratio of more than 40% for the pair, well above 

the 6.25% expected if all reward locations were visited randomly. We estimated 

dimensionality as the number of principal components that explained 95% of the 

hidden layer output variance given random place and cue inputs. 

Figure 2.5D (green line plot) shows the effect of different numbers of hidden units with 

ReLU activation functions. The expansion ratio was the ratio of the number of hidden 

layer units to the number of inputs; in this plot the number of inputs was fixed at 67. 

Increasing the expansion ratio from 1 to 175 increased the average number of cue-

reward associations learned from 0.02 ± 0.14 (SD)  to 14.9 ± 0.9 (SD) (the results in 

Fig. 2.3 used 8192 hidden units, which corresponded to an expansion ratio of 122); as 

the expansion ratio further increased to 250, the average number of associations learned 

declined modestly (t = -4.2, p < 0.001) to 13.6 ± 1.9. However, increasing the duration 

and number of training sessions allowed comparable performance with expansion 

ratios of 175 and 250 (data not shown). These results indicate that between 1675 

(expansion ratio of 25) and 3350 (expansion ratio of 50) hidden units were sufficient 

to learn six paired associations.  

Figure 2.5E (green points) shows the effect of different activation functions in a hidden 

layer with 8192 units. The ReLU nonlinearity allowed 14.9 ± 0.9 (SD) associations to 

be learned on average. Its variants, Leaky ReLU (LReLU), exponential LU (ELU) and 
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Softplus learned 13.3 ± 1.5, 13.7 ± 1.3, 10.9 ± 2.0 (SD) associations respectively on 

average. The hyperbolic tangent (tanh) nonlinearity enabled 9.7 ± 1.6 (SD) associations 

to be learned on average. All of these were sufficient to learn the six paired associations 

used above in Figure 2.3, though the number of associations learned were significantly 

less than when ReLU was used (independent 2 sample t-test, p < 0.001). In contrast, 

the sigmoid (logistic) nonlinearity learned 0.0 ± 0.0 (SD) associations, performing 

worse than the linear activation function (t = -9.0, p < 0.001) with unit gain, which 

learned 1.4 ± 1.0 (SD) association on average. These results showed that ReLU (and 

its variants) and the tanh nonlinearity were more suitable in learning multiple paired 

associations.  

We further examined the effect of different activation functions by defining two 

variants of ReLU. The activation function 𝜙𝐴 returned 0 if the input was below the 

threshold A, and was linear with unit gain if the input was above the threshold (inset in 

Fig. 2.5F); if the threshold was 0, the input-output curve was identical to ReLU (black); 

if the threshold was negative, the output would be 0 initially before turning negative 

and then positive (purple); if the threshold was positive, the output would be 0 before 

turning positive (blue). The activation function 𝜙𝐵 returned the threshold value B if the 

input was below the threshold, and was linear with unit gain if the input was above the 

threshold; if the threshold was 0, the input-output curve was identical to ReLU (black); 

the input-output curve was non-decreasing for all other threshold values (negative 

threshold – purple, positive threshold – blue). For both 𝜙𝐴 and 𝜙𝐵, the number of 

associations learned changed nonmonotonically with the threshold (Fig. 2.5F–G, 

green). The best performance across the hyperparameter regimes we studied was 

obtained with 𝜙𝐴 and a threshold of 3, which allowed 16 ± 0 (SD) associations to be 

learned (Fig. 2.5F, green); higher than the canonical ReLU activation function with 

threshold of 0 (t = 7.5, p < 0.001) which learnt 14.8 ± 1.0 (SD) and 𝜙𝐴 with a threshold 

of 2 (t = 2.1, p = 0.04) which learnt 16.0 ± 0.2 (SD) .  
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Figure 2.5. Hyperparameters affecting the Nonlinear Hidden Layer  g nt’       ty 

to learn 16 cue-reward pairs. (A) Schematic of 16 cue-reward pairs. (B) Example 

agent (𝜙𝐴 threshold = 3) trajectories corresponding to each of the 16 cues during the 

probe session. Crosses and squares indicate an agent’s start and end location 

respectively. (C) Example agent (𝜙𝐴 threshold = 3) superimposed value (color) and 

policy (small white arrows) maps (averaged over 5 simulations per agent) during the 

probe session. (D) Number of associations learned (green) and hidden layer output 

dimensionality (red) versus expansion ratio. (E) Number of associations learned 

(green) and hidden layer output dimensionality (red) for various activation functions. 

(F)–(G) Number of associations learned (green) and hidden layer output 

dimensionality (red) versus 𝜙𝐴 threshold (F) and 𝜙𝐵 threshold (G). Inset shows hidden 

unit’s firing rate when threshold is set at -2 (red), 0 (black), 2 (blue). See methods (Eq. 

21) for each activation function’s formulation. (H) Number of associations learned 

(green) and hidden layer output dimensionality (red) versus K, the number of excitatory 

inputs (I) Number of associations learned versus TD time constant. 40 simulations per 

hyperparameter condition with error bars indicating standard error. 
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Figure 2.5H (green) shows the effects of the distribution of excitatory and inhibitory 

synaptic weights from the 67 inputs to each of the 8192 hidden units with ReLU 

activation functions. The connectivity hyperparameter K indicated the total number of 

excitatory inputs each hidden unit received out of the 67 inputs, with the K excitatory 

input weights drawn from a uniform distribution between 0 and 1, and the remaining 

inhibitory input weights drawn from a uniform distribution between -1 and 0. The 

number of associations learned was nonmonotonic in K, with the best and comparable 

(t = 1.3, p = 0.18) performances of 15.2 ± 0.8 (SD)  and 14.9 ± 1.0 (SD)  achieved when 

K = 27 and 34 respectively; almost equal numbers of excitatory and inhibitory inputs 

(K = 33.5) onto each hidden unit. 

Figures 2.5D–H also show estimated hidden layer output dimensionality (red) in 

addition to the number of associations learned (green) for the various hyperparameters. 

Across hyperparameter regimes, learning 14 or more associations corresponded to a 

dimensionality of approximately 70 or greater, which was not inconsistent with a 

minimum dimensionality being needed for a certain learning capacity. However, 

dimensionality was not sufficient for determining learning, as there were many 

hyperparameter regimes in which dimensionality and learning capacity trended in 

opposite directions.     

The temporal difference error time constant (𝜏𝑔) in  oya’s formulation can be 

considered a function of the discount factor (often denoted 𝛾), or the trace decay factor 

(denoted 𝜆) in TD(𝜆) (Doya 2000), both of which are tunable hyperparameters 

(Bertsekas and Tsitsiklis 1996; Van Seijen et al. 2016; Sutton and Barto 2020; Xu, Van 

Hasselt, and Silver 2018). We therefore examined the effect of varying the TD time 

constant in the continuous temporal difference error formulation (Eq. 31) and how this 

affected the learning of paired associations. Fig. 2.5I shows the effect of varying the 

TD error time constant in agents with 8192 hidden layer units with ReLU activation 

functions. As the time constant increased from 100 ms to 3981 ms (equivalent to 𝛾 = 0 
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to 0.975), the number of associations learned increased monotonically from 0.1 ± 0.3 

(SD) to 14.5 ± 1.2 (SD). However, with a further increase in time constant to 10,000 

ms (𝛾 = 0.99), the agent learned only 10.3 ± 1.7 (SD) associations. However, 

comparable performance was attained with time constant of 10,000 ms and 4000 ms 

when the learning rate was reduced from 0.00001 to 0.0000075.  

2.3.5 Integrating working memory for learning multiple PAs 

To focus on the key features of the task and the agent architecture needed, previous 

sections used a version of the task in which the cue was present throughout each trial, 

and the hidden layers in the agents were feedforward layers. Here, we address some 

features of the biological experiments that were omitted in previous sections. First, in 

the biological experiments, the cue was present only at the start of each trial; second, 

some brain regions that may be involved are more commonly modelled as recurrent 

networks than feedforward networks; third, animals learnt the task faster than the 

agents in the previous sections. In this final section of the results, we therefore 

considered a slightly different version of the task with 6 cue-reward location pairs in 

which the cue was present only at the start of each trial (Tse et al. 2007) (Fig. 2.6A). 

We show that adding a bump attractor to the agent provided working memory that 

enabled the task to be learned when the cue was present only at the start of each trial. 

We also showed that using a reservoir of recurrently connected neurons for the hidden 

layer improved learning, and allowed agents to learn as quickly as animals. 
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Figure 2.6. Learning multiple paired association navigation with transient cues. 

(A) Schematic of agent with bump attractor and recurrent reservoir; the bump attractor 

received the encoded cue as input and excited the reservoir; the reservoir provided 

inputs to the actor and critic. (B) Persistent bump attractor activity after presenting cues 

1 to 6 for the first 5 seconds; despite a distractor at 30 seconds, the main bump persisted, 

and the distractor was suppressed 82.8% of the time over 30 simulation runs. (C) Mean 

visit ratios in probe sessions (200 simulations per agent). (D) Mean latency across all 

trials in a session to reach the correct reward location versus session number (200 

simulations per agent, shaded area indicates 25th and 75th quantiles). 
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In agents with working memory, the encoded cue excited not only the hidden layer, but 

also excited a bump attractor (Fig. 2.6A). Each cue caused persistent activity 

throughout the trial in a different subset of bump attractor neurons (Fig. 2.6B). The 

activity of the bump attractor was an additional input to the hidden layer, which was 

either a nonlinear feedforward layer or a recurrent reservoir (Fig. 2.6A). The activation 

function for both types of hidden layer was 𝜙𝐴[𝑥𝑗 𝑡 , 𝜃 = 3], which had given the best 

performance for feedforward layers (Fig. 2.5G). While previous sections used a total 

reward value of 1, here the total reward value was 4, which enabled the agent to learn 

more quickly. Alternatively, the learning rate of the critic can be increased to achieve 

similar learning outcomes. 

Fig. 2.6C shows that with probe sessions on Sessions 2 (PS1), 9 (PS2) and 16 (PS3), 

the feedforward and reservoir agents with working memory attained visit ratios 

comparable to or better than the approximately 36% attained by animals on PS3 in a 

similar task (Tse et al. 2007). Feedforward and reservoir agents without the bump 

attractor to provide working memory had visit ratios comparable to those of Classic 

and Linear Hidden Layer agents and to that of chance performance. Fig. 2.6D similarly 

shows that the nonlinear feedforward and reservoir agents with working memory 

exhibited decreases in latency to the correct reward location that were markedly better 

than the decreases in latency of agents without working memory. Successful learning 

can also be seen in the value and policy maps and example trajectories of an example 

reservoir agent (Supplementary Fig. 2.2A). Strikingly, the Reservoir agents learned 

faster than the Nonlinear Hidden Layer agents, showing an advantage of a recurrent 

reservoir over a feedforward layer [Fig. 2.6C–D].    

2.4 Discussion 

We have shown that adding a nonlinear hidden layer to classic actor-critic agents with 

biologically plausible synaptic plasticity enables them to learn multiple paired 
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association navigation. A nonlinear hidden layer that was a feedforward layer was 

sufficient, but even faster learning was obtained with a recurrent reservoir. Deep 

reinforcement learning actor-critic agents learn the task, but do not have biologically 

plausible plasticity (Botvinick et al. 2020). We verified that Classic actor critic agents 

with biologically plausible plasticity learn to navigate to a single reward location 

(Foster et al. 2000; Frémaux et al. 2013), and showed that they also adapt to reward 

location displacement, yet could not learn multiple paired association navigation. 

Addition of hidden layers to actor-critic agents had been discussed, but largely unused 

or not explicitly used in investigations of their capabilities (Barto et al. 1983; Houk, 

Adams, and Barto 1994). In a sense, the Classic agents implicitly contain hidden layers, 

since they use place cells, which are constructed in part by many layers of cortical 

circuitry between sensory input and the hippocampus. We should therefore more 

precisely say that we have added a hidden layer that processes information from place 

cells and sensory input before sending it to the actor and critic.   

We do not have a clear theoretical understanding of when a hidden layer is needed. 

However, our addition of a hidden layer was motivated by the successes of reservoir 

computing, in which the internal connections of the recurrent reservoir are not plastic, 

and plasticity is restricted to connections that read out from the reservoir (Cazin et al. 

2019; Enel et al. 2016; Hoerzer et al. 2012; Maass, Natschläger, and Markram 2002; 

Sussillo and Abbott 2009; Xiong, Znamenskiy, and Zador 2015; Zhang et al. 2018). 

Similarly, the hidden layer or reservoir in our agents is not plastic, and plasticity is 

restricted to connections to the actor and critic that read out from the hidden layer or 

reservoir. A hidden layer or reservoir has been suggested to facilitate performance of 

some tasks by representing its inputs in a higher dimensional space (Marr 1969; Albus 

1971; Rigotti et al. 2013; Cayco-Gajic et al. 2017; Litwin-Kumar et al. 2017; Cayco-

Gajic and Silver 2019). Our results are not inconsistent with a minimum dimensionality 

for learning the task, but suggest that dimensionality is not sufficient to determine 



 - 57 -  

 

performance (Cayco-Gajic and Silver 2019; Litwin-Kumar et al. 2017b). Yet, it is 

unclear why the actor-critic with the reservoir learns the multiple paired association 

task better than the actor-critic with the nonlinear hidden layer. We postulate that the 

reservoir’s internal noise increases the stochasticity of the input which has been shown 

to facilitate better policy convergence (An 1996; Asabuki, Hiratani, and Fukai 2018; 

Neelakantan et al. 2015). Furthermore, we suggest the reservoir's recurrent dynamics 

convolves the temporal inputs, allowing the reservoir-actor-critic agent to better assign 

credits, similar to an actor-critic with eligibility traces (Grondman et al. 2012; Kimura 

and Kobayashi 1998; Sutton and Barto 2020). 

The plasticity rules we have used are biologically plausible in the sense that they are 

functions of a global neuromodulatory factor, presynaptic activity, and postsynaptic 

activity. Plasticity at actor synapses depends on all three factors, taking the commonly 

used form of a neuromodulated Hebbian rule (Frémaux and Gerstner 2016). Plasticity 

at critic synapses depends on a global factor and presynaptic activity, but not 

postsynaptic activity, taking the form of a two-factor neuromodulated non-Hebbian 

rule that is less common, but is used to model plasticity at cerebellar Purkinje cells 

(Medina et al. 2000; Medina and Mauk 1999; Piochon et al. 2013). Non-Hebbian 

plasticity without postsynaptic activity has also been described at several synapses 

(Humeau et al. 2003; Lechner and Byrne 1998; Piochon et al. 2013). Interestingly, 

while the earliest versions of actor-critic agents with biologically plausible plasticity 

have used a two-factor rule for plasticity at critic synapses, Frémaux and colleagues 

have successfully used a three-factor rule at critic synapses by using an exponential 

activation function for the critic (Frémaux et al. 2013).   

Beyond the form of the plasticity rules, could the agent's architecture be mapped to 

anatomical structures in the brain to produce testable hypotheses? Because the 

dopamine neurons encode some form of TD error that modulates plasticity at 

corticostriatal (neocortico-striatal and hippocampal-striatal) synapses in the basal 
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ganglia (P. Read Montague et al. 1996; Reynolds JNJ et al. 2001; Reynolds and 

Wickens 2002; W Schultz et al. 1997), the actor and critic have most often been 

suggested to correspond to different basal ganglia divisions (Houk et al. 1994; Joel et 

al. 2002; Niv 2009). Learning to navigate is broadly consistent with a basal ganglia 

actor and critic, as hippocampal place cells project strongly to the ventral striatum, with 

the hippocampus and ventral striatum required or important for learning to navigate 

(Arleo and Gerstner 2000; Brown and Sharp 1995). While there is tension between 

such proposals and experiments showing that the dorsolateral striatum is not needed 

for expressing simple learned allocentric navigation (Packard and McGaugh 1996), 

both may perhaps be accommodated along the lines of proposals that the ventral and 

dorsomedial striatum may be more involved in goal-directed learning, while the 

dorsolateral striatum may be more important for the learning of habits (Everitt and 

Robbins 2016; Graybiel 2008; Lipton et al. 2019; Yin and Knowlton 2006). Further, 

ventral tegmental area dopaminergic signals also modulate hippocampal and 

neocortical plasticity, which may therefore play a role in learning to navigate in 

addition to corticostriatal plasticity (Palacios-Filardo and Mellor 2019; Seamans and 

Yang 2004; Sheynikhovich, Otani, and Arleo 2013; Sosa and Giocomo 2021; Xiao, 

Lin, and Fellous 2020).      

As place cells in hippocampal CA3 project to CA1, the latter may correspond to the 

hidden layer in our agent (Muller 1996). Since CA1 place cells can form without CA3 

place cells (Brun et al. 2002; Moser et al. 2015), the hidden layer may also correspond 

to prefrontal and parietal cortical regions that are downstream of CA3 and CA1 and 

required for navigation (De Bruin, Swinkels, and De Brabander 1997; Ethier et al. 

2001; Kesner, Farnsworth, and DiMattia 1989; Kolb et al. 1994; Negrón-Oyarzo et al. 

2018; Poucet and Hok 2017; Sutherland, Wishaw, and Kolb 1988; Whitlock et al. 

2008). Damage to the prefrontal cortex slows, but does not prevent learning to navigate 

to a single reward location after extensive training, consistent with our results that the 
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task does not require a hidden layer (Whitlock et al. 2008). Postulating that the hidden 

layer exists in the prefrontal cortex predicts that prefrontal damage would nonetheless 

prevent learning multiple paired association navigation.  

However, such an effect of prefrontal damage would seem to be also explainable by 

other hypotheses. To aid the design of experiments that could distinguish them, future 

computational work would refine the biological plausibility of the present agent, and 

investigate alternative agent architectures. Agent refinement may include development 

of a version with spiking neurons, and incorporation of biological details such as timing 

effects of dopaminergic plasticity modulation and effects of other neuromodulators 

(Brzosko et al. 2015; Pawlak et al. 2010; Yagishita et al. 2014). Such considerations 

may also suggest other agent architectures. Recent experimental data on acetylcholine 

and dopamine led to an agent without an actor-critic architecture that learns single 

reward locations (Brzosko et al. 2017; Zannone et al. 2018). Anatomical considerations 

have led to actor-critic agents that do not depend on the TD error ( ’ eilly et al. 2  7; 

 ’ eilly and  rank 2  6). However, whether these agents can learn multiple paired 

association navigation has not been studied yet. It would also be interesting to evaluate 

agents on cued task switching, which resembles multiple paired association learning in 

requiring context-dependent behaviour, and is often considered indicative of cognitive 

flexibility (Monsell 2003; Schneider and Logan 2009; Stokes et al. 2013; Wallis, 

Anderson, and Miller 2001). Finally, multiple paired association navigation has been 

part of a suite of tasks to investigate few-shot learning (Tse et al. 2007, 2011). Few-

shot learning to displaced single reward locations is displayed by rodents (Steele and 

Morris 1999), and had also been addressed by the modelling work of Foster and 

colleagues (2000). Their classic actor-critic agent did not exhibit few-shot learning for 

displaced single reward locations, nor did any of the actor-critic agents in the present 

chapter based on their classic actor-critic agent. However, Foster and colleagues (2000) 

demonstrated few-shot learning by a coordinate-learning actor-critic agent augmented 
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with dead reckoning capability. In separate work, we have built on their coordinate 

learning and dead reckoning-based framework to demonstrate agents capable of few-

shot learning in multiple paired association navigation (Kumar et al. 2021). We do not 

know whether few-shot learning can be performed by other variations of the type of 

actor-critic agents we have studied in the present chapter that do not have built-in dead 

reckoning. We also do not know what other agents without built-in dead reckoning 

might perform few-shot navigation learning, and it remains a challenge to extend 

current biologically-plausible agents to perform comparably to animals on all 

navigation tasks.    
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CHAPTER 3 One-shot learning of paired association 

navigation with schemas and reward-modulated Hebbian 

plasticity (Kumar et al., 2021) 

 

(The contents of this chapter have been published. Please refer to page VI for details.) 

Abstract 

Schemas are knowledge structures that can enable one-shot learning. Rodent one-shot 

learning in a multiple paired association navigation task has been postulated to be 

schema-dependent. However, the correspondence between schemas and neural 

implementations remains poorly understood, and biologically plausible computational 

models of the rodents' learning had not been demonstrated. Here, we compose such an 

agent from schemas with biologically plausible implementations. The agent contains 

an associative memory component that can form one-shot associations between sensory 

cues and goal coordinates. This is implemented using a reservoir of recurrently 

connected neurons which receives sensory cues as inputs and whose output weights are 

modified using a novel 4-factor Exploratory Hebbian (EH) rule. Adding an actor-critic 

allows the agent to succeed even if obstacles prevent navigation by direct heading. We 

also show that temporal-difference learning of a working memory gate enables one-

shot learning even if each cue is transiently presented, replicating the rodent behaviour. 

3.1 Introduction 

Schemas are mental frameworks of relationships among information and actions. 

Schemas can aid learning. For example, one often better recalls content from a lecture 

on a subject in which one already has a framework for understanding. To make the 

biological mechanisms of schema-dependent learning accessible to investigation with 

the techniques of experimental neuroscience, Tse and colleagues devised a behavioural 

paradigm in which rodents demonstrated more rapid learning after an initial learning 

experience, analogous to that displayed by people during schema-dependent learning 

(Tse et al, 2007). Rodents performed a two-stage multiple paired associations (MPA) 
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task. In the first stage, rodents were given a cue at the start of each trial, indicating 

where they had to go to get a reward. Different cues were presented on different trials, 

and rodents learned to associate different cues with different target locations. Learning 

was relatively slow in the first stage. In the second stage, new cues were given, and 

learning was rapid, with rodents demonstrating one-shot learning, needing only a single 

exposure to each new cue to navigate to the correct location on subsequently 

encountering the cue. 

Machine learning algorithms from fields like transfer learning and meta-learning 

behave similarly, with prior learning accelerating subsequent learning to the point of 

being few-shot or one-shot (Hospedales et al, 2020; Ravi and Larochelle, 2016; Finn 

et al, 2017; Wang et al, 2018; Ritter et al, 2018). Such algorithms have been adapted 

for modelling scenarios resembling the experimental paradigm of Tse and colleagues 

(McClelland, 2013; Hwu et al, 2020). However, those algorithms depend on 

backpropagation or contrastive Hebbian learning, which are not biologically plausible, 

as synaptic plasticity in backpropagation is acausal or nonlocal, while contrastive 

Hebbian learning depends on synaptic rules that differ in alternating phases (Murray, 

2019; Bellec, 2020; Lillicrap et al, 2020). Accordingly, we present here an agent in 

which synaptic plasticity is governed by biologically-plausible rules, and that replicates 

the one-shot learning of rodents. Given that Tse and colleagues devised their 

experimental paradigm to address schema-dependent learning, we also explicitly 

describe schemas that could underlie the observed rodent behaviour, and explain how 

each schema has a counterpart biologically-plausible implementation in the agent. 

We build on work by Foster and colleagues (2000), who demonstrated a biologically-

plausible agent that modelled rodent one-shot learning of a delayed matching-to-place 

(DMP) task. In the DMP task, rats are required to navigate to a target whose position 

remains the same throughout four trials each day, but whose position is changed every 

day. During the first few days, the time taken to find the newly displaced target 
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gradually decreases from trial to trial, but after several days, rats find the target on the 

second trial (Steele and Morris 1999). Their agent may be thought of as composed of 

3 schemas. (1) LEARN METRIC REPRESENTATION allows the agent to learn 

coordinates that are a continuous metric representation of its current position; this 

schema was neurally implemented with biologically-plausible synaptic plasticity 

involving a generalized vector temporal difference (TD) error. (2) LEARN GOAL 

COORDINATES allows the agent to learn the goal coordinates in one shot; this schema 

had a non-neural, symbolic implementation to store the target coordinates at which a 

reward was disbursed. (3) NAVIGATE allows the agent to perform vector subtraction 

between coordinates of its current and goal locations to obtain a direction in which to 

head to reach the goal; this schema had a non-neural, symbolic implementation. This 

agent shows gradual learning before transitioning to one shot learning because it 

executes 2 learning schemas: LEARN METRIC REPRESENTATION learns slowly; 

LEARN GOAL COORDINATES always learns in one shot. Initial learning is gradual 

as it involves both the schemas, but then becomes one shot once LEARN METRIC 

REPRESENTATION has completed learning and new learning depends only on 

LEARN GOAL COORDINATES. 

Because the LEARN GOAL COORDINATE schema is a non-associative memory that 

stores the coordinates of a single goal, the agent of Foster and colleagues is unable to 

learn the MPA task; this schema received only a non-neural, symbolic implementation. 

We therefore replaced it with the LEARN FLAVOUR-LOCATION schema, which is 

an associative memory that is able to learn each of several multiple cue-location paired 

associations in one shot. 

We demonstrate two agents in which the LEARN GOAL COORDINATE schema is 

replaced with the LEARN FLAVOUR-LOCATION schema, enabling one-shot 

learning in both DMP and MPA tasks. One of the agents is symbolic, while the other 

is neural. In both symbolic and neural agents, LEARN METRIC REPRESENTATION 
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is neurally implemented as by Foster and colleagues. The symbolic agent implements 

LEARN FLAVOUR-LOCATION symbolically with a key-value matrix to store and 

recall cue-associated goal coordinates; and NAVIGATE is symbolically implemented 

as by Foster and colleagues. The neural agent implements LEARN FLAVOR-

LOCATION with a reservoir of recurrently connected units whose readout weights 

undergo synaptic plasticity governed by a novel biologically-plausible 4-factor 

exploratory Hebbian (EH) learning rule to learn a flavour-location association after one 

trial; additionally, NAVIGATE is neurally implemented by using backpropagation to 

train a network whose input-output relationships closely match those of the symbolic 

NAVIGATE implementation; as backpropagation is not biologically plausible, we 

assume that the neural implementation of NAVIGATE arises via processes during 

development or prior experience that we do not model. When these agents are 

supplemented with an actor-critic, they can demonstrate one-shot learning of new 

association pairs even in an arena with obstacles. Lastly, we show that if the agent uses 

a reward prediction error to learn a working memory gating policy, the agent 

demonstrates one-shot learning even if the cue is presented only at the start of a trial, 

and despite distractor stimuli being present during navigation. 

3.2 Methods 

3.2.1 General neuron model  

The membrane potential dynamics 𝑥𝑖 𝑡  of all neurons, except place cells and units 

within the neural NAVIGATE schema, were simulated using  

 𝜏�̇�𝑗 𝑡 = −𝑥𝑗 𝑡 + ∑𝑊𝑖𝑗𝑢𝑖 𝑡 

𝑁

𝑖=1

+ √𝜏𝜎2𝜉 𝑡  (1) 

with membrane time constant 𝜏 = 100 𝑚𝑠, inputs 𝑢𝑗 𝑡  linearly weighted using 

synaptic weights 𝑊𝑖𝑗 and stochasticity defined using Gaussian white noise process 𝜉 𝑡  
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with zero mean and unit variance and tuned individually using 𝜎. The firing rates are 

modelled using either a linear or nonlinear activation function.  ach neuron’s dynamics 

was discretized with the Euler–Maruyama method: 

 𝑥𝑗 𝑡 =  1 − 𝛼 𝑥𝑗 𝑡 − Δ𝑡 + 𝛼 (∑𝑊𝑖𝑗𝑢𝑖 𝑡 

𝑁

𝑖=1

+ √
𝜎2

𝛼
𝑁 0,1 ) (2) 

where 𝛼 ≡ ∆𝑡 𝜏⁄  and 𝑁 0,1  is the standard normal distribution. We used a time step 

of 20 𝑚𝑠 for all simulations. The specific implementation is outlined in the subsequent 

sections. 

Model-free reinforcement learning 

The biologically plausible Actor-Critic was adapted from (Kumar et al. 2022). All 

agents have 49 place cells whose firing rates depend on the agent’s position in the arena 

𝑠 𝑡 . The firing rate of the 𝑖th place cell is  

 𝑢𝑖
𝑝𝑐 𝑡 = exp(−

 𝑠 𝑡 − 𝑠𝑖 
2

2𝜎𝑝𝑐
2 ) (3) 

with 𝜎𝑝𝑐 = 0.267 𝑚, and place cells centers 𝑠𝑖 spaced 0.267 𝑚  apart at the 

intersections of a regular 7-by-grid. Each cue is encoded by 𝑢𝑐𝑢𝑒, a one-hot vector of 

length 18 with gain 3, for example, 𝑢𝑐𝑢𝑒 = [0,3,0,… ] for the second cue. The cue and 

𝑢𝑐𝑢𝑒 were constant throughout each trial, except for the working memory task in Figure 

3.7 where the cue was presented 1 second after the start of each trial for 2 seconds, 

similar to the experiment by Tse et al. (2007). During the cue presentation period, place 

cell activity and agent actions were silenced to simulate cue presentation to the rat in 

the starting box with no knowledge of its position in the maze. Subsequently, 𝑢𝑐𝑢𝑒 was 

set to zero while place cell activity and agent actions were switched on for navigation.  

The place cell activities and sensory cue were concatenated to form an input vector  
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 𝑢𝑖 𝑡 = [𝑢𝑖
𝑝𝑐 𝑡 , 𝑢𝑖

𝑐𝑢𝑒 𝑡  ] (4) 

with length 𝑁𝑖𝑛𝑝𝑢𝑡𝑠 = 67 and passed to the reservoir of recurrently connected neurons 

as inputs. The firing rates of the reservoir neurons are  

 𝑟𝑗 𝑡 = 𝜙[𝑥𝑗 𝑡 ] (5) 

 

with the nonlinear activation function  

 𝑓 𝑥 = {
0, 𝑥 < 3
𝑥, 𝑥 ≥ 3

 (6) 

And membrane potential dynamics  

 

𝜏�̇�𝑗 𝑡 = −𝑥𝑗 𝑡 + ∑ 𝑊𝑖𝑗
𝑖𝑛𝑝

𝑢𝑖 𝑡 +

𝑁𝑖𝑛𝑝𝑢𝑡𝑠

𝑗=1

𝜆 ∑ 𝑊𝑗𝑘
𝑟𝑒𝑐tanh [𝑥𝑘 𝑡 ]

𝑁

𝑘=1

+ √𝜏𝜎𝑟𝑒𝑠
2 𝜉 𝑡  

(7) 

with 𝜆 = 1.5 and 𝜎𝑟𝑒𝑠 = 0.025. The synaptic weights 𝑊𝑖𝑗
𝑖𝑛𝑝

 were drawn from a 

uniform distribution between [−1,1], 𝑊𝑖𝑗
𝑟𝑒𝑐 from a Gaussian distribution with zero 

mean and variance 1/𝑝𝑁 with connection probability 𝑝 = 0.1.  

All agents have an actor of 𝑀 = 40 neurons with firing rate of the 𝑘th actor neuron  

 𝜌𝑘 𝑡 = ReLU[𝑞𝑘 𝑡 ] (8) 

With the rectified linear unit activation (ReLU) function and membrane potential 𝑞𝑘 

has dynamics  
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𝜏�̇�𝑘 𝑡 = −𝑞𝑘 𝑡 + 𝛽𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑞𝑙
𝑁𝐴𝑉 𝑡 +  1 − 𝛽𝑐𝑜𝑛𝑡𝑟𝑜𝑙 ∑𝑊𝑗𝑘

𝑎𝑐𝑡𝑜𝑟𝑟𝑗 𝑡 

𝑁

𝑗=1

+ ∑𝑊ℎ𝑘
𝑙𝑎𝑡𝑒𝑟𝑎𝑙𝜌ℎ 𝑡 

𝑀

ℎ=1

+ √𝜏𝜎𝑎𝑐𝑡𝑜𝑟
2 𝜉 𝑡  

(9) 

With 𝜎𝑎𝑐𝑡𝑜𝑟 = 0.25. 𝑞𝑙
𝑁𝐴𝑉 is the input from the symbolic or neural NAVIGATE 

schema. The synaptic weights 𝑊𝑗𝑘
𝑎𝑐𝑡𝑜𝑟 linearly weight the reservoir activity. 

𝛽𝑐𝑜𝑛𝑡𝑟𝑜𝑙determines the controls the contributions from the reservoir and the 

   I  T  schema in controlling the agent’s actions. 𝛽𝑐𝑜𝑛𝑡𝑟𝑜𝑙 takes values between 

0 and 1 inclusive to be either a pure Actor-Critic or schema agent respectively. 

𝛽𝑐𝑜𝑛𝑡𝑟𝑜𝑙 = 0.3, 𝛽𝑐𝑜𝑛𝑡𝑟𝑜𝑙 = 0.4 and 𝛽𝑐𝑜𝑛𝑡𝑟𝑜𝑙 = 0.9 were used for the navigation tasks 

in Figure 3.4, 3.6 and 3.7 respectively. 𝑊ℎ𝑘
𝑙𝑎𝑡𝑒𝑟𝑎𝑙 was defined using  

 𝑊ℎ𝑘
𝑙𝑎𝑡𝑒𝑟𝑎𝑙 =

𝑤−

𝑀
+ 𝑤+

𝑓 𝑘, ℎ 

∑ 𝑓 𝑘, ℎℎ  
 (10) 

with 𝑓 𝑘, ℎ =  1 − 𝛿𝑘ℎ 𝑒
𝜑cos  𝜃𝑘−𝜃ℎ , 𝑤+ = 1, 𝑤− = −1 and 𝜑 = 20, connect the 

actor neurons into a ring attractor that smooths the agent’s trajectory. The 𝑘th actor 

neuron represents a spatial direction 𝜃𝑘 = 2𝜋𝑘/𝑀 and the action 

 𝑎 𝑡 =
𝑎0

𝑀
∑𝜌𝑘 𝑡 [sin𝜃𝑘 , cos 𝜃𝑘]

𝑘

 (11) 

is the vector sum of directions weighted by each actor neuron’s firing rate, with 𝑎0 =

0.03 translating to the agent moving at about 0.8 𝑚𝑠−1. Agents with a critic neuron 

has firing rate  

 𝑣 𝑡 = ReLU[𝜍𝑘 𝑡 ] (12) 

with membrane potential dynamics  
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 𝜏𝜍̇𝑘 𝑡 = −𝜍𝑘 𝑡 + ∑𝑊𝑗𝑘
𝑐𝑟𝑖𝑡𝑖𝑐𝑟𝑗 𝑡 

𝑁

𝑗=1

+ √𝜏𝜎𝑐𝑟𝑖𝑡𝑖𝑐
2 𝜉 𝑡  (13) 

with 𝜎𝑐𝑟𝑖𝑡𝑖𝑐 = 1−8 and 𝑊𝑗𝑘
𝑐𝑟𝑖𝑡𝑖𝑐 is the synaptic weights from the reservoir. The output 

of the critic 𝑣 𝑡  and the reward 𝑅 𝑡  in Eq. 49 define the continuous temporal 

difference (TD) error (Doya 2000; Frémaux et al. 2013)  

 𝛿𝐷𝐴 𝑡 = 𝑅 𝑡 + �̇� 𝑡 −
1

𝜏𝑔
𝜐 𝑡  (14) 

and discretised according to Kumar et al. (2022)  

 𝛿𝐷𝐴 𝑡 = 𝑅 𝑡 − Δ𝑡 + [𝜐 𝑡 − (1 + 𝛼𝑔)𝜐 𝑡 − Δ𝑡 ] (15) 

with 𝛼𝑔 ≡ ∆𝑡/𝜏𝑔 and, 𝜏𝑔 = 3000 𝑚𝑠 for Figures 3.3, 3.5 and 3.7 that did not have 

obstacles and 𝜏𝑔 = 10,000 𝑚𝑠 for Figures 3.4 and 3.6 that required the agents to 

navigate past obstacles (Table 1). Synaptic plasticity of the weights onto the critic is 

governed by the two-factor rule 

 ∆𝑊𝑗𝑘
𝑐𝑟𝑖𝑡𝑖𝑐 𝑡 = 𝜂𝑐𝑟𝑖𝑡𝑖𝑐 ∙ 𝑟𝑗 𝑡 ∙ 𝛿𝐷𝐴 𝑡  (16) 

with the presynaptic reservoir firing rate 𝑟𝑗 𝑡  modulated by the continuous TD error 

(Foster et al. 2000; Sutton and Barto 2020). Synaptic plasticity of the weights from the 

reservoir to the actor is governed by a three-factor rule 

 ∆𝑊𝑗𝑘
𝑎𝑐𝑡𝑜𝑟 𝑡 = 𝜂𝑎𝑐𝑡𝑜𝑟 ∙  𝑟𝑗 𝑡 ∙ 𝜌𝑘 𝑡 ∙ 𝛿𝐷𝐴 𝑡  (17) 

with the outer product of the presynaptic and postsynaptic activity modulated by the 

TD error. The learning rates were optimised for each task using a grid search between 

0.000001 to 0.0001 for the actor and between 0.00001 to 0.001 for the critic (Table. 

1). 
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Table 1. Actor-Critic learning hyperparameters for each task 

Task Figure 𝑹 𝝉𝒈 (ms) 𝜼𝒄𝒓𝒊𝒕𝒊𝒄 𝜼𝒂𝒄𝒕𝒐𝒓 

DMP  3.3 5 3000 0.0002 0.00002 

Single goal + Obstacle  3.4 1 10,000 0.0001 0.00001 

MPA 3.5 & 3.7 5 3000 0.0002 0.00005 

MPA + Obstacle 3.6 1 10,000 0.0001 0.000005 

 

3.2.2 LEARN METRIC REPRESENTATION algorithm 

The firing rate of the X and Y coordinate cells follow the linear dynamics of the 

membrane potential  

 𝜏�̇�𝑗 𝑡 = −𝑝𝑗 𝑡 + ∑𝑊𝑖𝑗
𝑐𝑜𝑜𝑟𝑑𝑢𝑖

𝑝𝑐 𝑡 

𝑃

𝑖=1

+ √𝜏𝜎𝑐𝑜𝑜𝑟𝑑
2 𝜉 𝑡  (18) 

Where 𝜎𝑐𝑜𝑜𝑟𝑑
2 = 1𝑒 − 8 and 𝑊𝑖𝑗

𝑐𝑜𝑜𝑟𝑑 is the synaptic weights from place cells to 

coordinate cells. Although place cells encode spatial information, it is binned instead 

of a continuous representation of the environment for the agent to perform vector-based 

navigation. The coordinate cells are an explicit metric representation of the continuous 

space in the maze that the agent can use to self-localise and flexibly perform vector 

navigation without needing a lookup table (Bush et al. 2015; Fiete et al. 2008).  

Learning a metric representation is formulated as a path integration learning problem 

by integrating place cell activity and self-motion information �̂� 𝑡 . The self-motion 

information is the actual displacement of the agent in an environment after correcting 

for bouncing off boundaries, making it different from the action 𝑎 𝑡  specified by the 

agent (Eq. 11). An agent can estimate its current coordinates by performing vector 

addition between its displacement in the arena and the previously estimated coordinates  
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 𝑝𝑗 𝑡 = 𝑝𝑗 𝑡 − Δ𝑡 + �̂�𝑗 𝑡  (19) 

which yields the self-consistency equation  

 𝑝𝑗 𝑡 − 𝑝𝑗 𝑡 − Δ𝑡 − �̂�𝑗 𝑡 = 0 (20) 

if the agent performed perfect path integration to accurately estimate its current 

coordinates. Path integration errors can be converted into a temporal difference error  

 𝛿𝑗
𝑐𝑜𝑜𝑟𝑑 𝑡 = 𝑝𝑗 𝑡 − 𝑝𝑗 𝑡 − Δ𝑡 − �̂�𝑗 𝑡  (21) 

which the agent minimises by computing an eligibility trace of the place cell activity 

 𝜏𝑐𝑜𝑜𝑟𝑑�̇�𝑖 𝑡 = −𝑒𝑖 𝑡 + 𝑢𝑖
𝑝𝑐 𝑡  (22) 

with 𝜏𝑐𝑜𝑜𝑟𝑑 = 1000 𝑚𝑠 and using the two-factor Hebbian rule by taking the 

presynaptic place cell activity modulated by the path integration TD error 

 Δ𝑊𝑖𝑗
𝑐𝑜𝑜𝑟𝑑 𝑡 = 𝜂𝑐𝑜𝑜𝑟𝑑  ∙ 𝑒𝑖 𝑡 ∙ 𝛿𝑗

𝑐𝑜𝑜𝑟𝑑 𝑡  (23) 

with 𝜂𝑐𝑜𝑜𝑟𝑑 = 0.01. Reducing the time constant 𝜏𝑐𝑜𝑜𝑟𝑑 to 200 𝑚𝑠 and 100 𝑚𝑠 allowed 

the agent to learn the metric representation though convergence was increasingly 

slower.  

3.2.3 LEARN FLAVOUR-LOCATION algorithm 

When an agent navigates around the arena and receives a reward, its current location is 

taken to be the goal coordinates. A key–value association matrix is used to store the 

flavour cue in the key matrix and the agent’s coordinates concatenated with a recall 

value of 1 [𝑥, 𝑦, 1] into the value matrices respectively (Fig. 3.2B). In the subsequent 

trial, the cue vector is treated as a query and a distance-based metric  

 𝐴 𝑡 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝛽𝑟𝑒𝑐𝑎𝑙𝑙𝑢𝑐𝑢𝑒 𝑡 𝐾𝑇) (24) 
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with 𝛽𝑟𝑒𝑐𝑎𝑙𝑙 = 1 is used to compute the memory index 𝐴 𝑡  which informs if and 

where the flavour cue is stored in the key matrix. The index recalls the corresponding 

goal coordinates and recall value from the value matrix  

 𝑔 𝑡 = 𝐴 𝑡 𝑉 (25) 

The recall value describes the accuracy of recalling the goal coordinates i.e. when the 

recall of goal coordinates is imperfect, recall value will be lower than 1. If the trial ends 

and no reward is disbursed, the row of the key and value matrices corresponding to the 

cue is set to 0 to delete the cue and coordinate association. 

Instead of a symbolic key-value matrix, three readout units from a reservoir are trained 

to recall the X, Y goal coordinates and recall value when it receives flavour cues as 

inputs. The firing rate of the goal coordinate neurons 𝑔𝑖 𝑡  follows the membrane 

potential dynamics  

 𝜏�̇�𝑖 𝑡 = −𝑔𝑖 𝑡 + 𝑔𝑖
𝑛𝑜𝑖𝑠𝑦 𝑡  (26) 

with 𝑔𝑖
𝑛𝑜𝑖𝑠𝑦 𝑡  given by a vector sum of the reservoir activity and 𝑊𝑖𝑗

𝑔𝑜𝑎𝑙
 synaptic 

weights 

 𝑔𝑖
𝑛𝑜𝑖𝑠𝑦 𝑡 = ∑𝑊𝑖𝑗

𝑔𝑜𝑎𝑙
𝑟𝑗 𝑡 

𝑁

𝑗=1

+ √𝜏𝜎𝑔𝑜𝑎𝑙
2 𝜉 𝑡  (27) 

as well as the exploratory white noise with 𝜎𝑔𝑜𝑎𝑙
2 = 0.05. To form an association 

between the flavour cue and the agent’s coordinates, a target vector 𝑔𝑖
𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑒 𝑡  is 

determined according to 

 𝑔𝑖
𝑎𝑠𝑠𝑜𝑖𝑎𝑡𝑒 𝑡 = [𝑝𝑖 𝑡 , 1] (28) 

which is a concatenation of the agent’s current coordinates and a scalar value one. The 

synaptic weights were trained either by the reward modulated Least Mean Square 
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(LMS) rule which takes the presynaptic reservoir firing activity and the vector error 

between the target vector 𝑔𝑖
𝑎𝑠𝑠𝑜𝑖𝑎𝑡𝑒 𝑡  and goal coordinate neurons 

 ∆𝑊𝑖𝑗
𝑔𝑜𝑎𝑙 𝑡 = 𝜂𝑔𝑜𝑎𝑙 ∙ 𝑟𝑗 𝑡 ∙ (𝑔𝑖

𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑒 𝑡 − 𝑔𝑖 𝑡 ) ∙ Θ(𝑅 𝑡 ) (29) 

or the reward-modulated Exploratory Hebbian (EH) rule (Hoerzer et al. 2012) that 

takes the presynaptic reservoir activity and the difference between the noisy and 

smooth goal neuron firing activity as postsynaptic neurons 

 

∆𝑊𝑖𝑗
𝑔𝑜𝑎𝑙 𝑡 = 𝜂𝑔𝑜𝑎𝑙 ∙ 𝑟𝑗 𝑡 ∙  𝑔𝑖

𝑛𝑜𝑖𝑠𝑦 𝑡 − 𝑔𝑖 𝑡  ∙ 𝑀 𝑡 

∙ Θ 𝑅 𝑡   

(30) 

A sparse modulatory factor 𝑀 𝑡  is computed 

 𝑀 𝑡 = {
1, �̅� 𝑡 < 𝑃 𝑡 
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (31) 

where the performance index 𝑃 𝑡  is the negative mean squared error between the 

target vector 𝑔𝑖
𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑒 𝑡  and goal neuron 𝑔𝑖 𝑡  activity 

 𝑃 𝑡 = −∑[𝑔𝑖
𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑒 𝑡 − 𝑔𝑖

𝑛𝑜𝑖𝑠𝑦 𝑡 ]
2

3

𝑖=1

 (32) 

and a low pass filter of the performance index is �̅� 𝑡  given as 

 𝜏
𝑑�̅�

𝑑𝑡
 𝑡 = −�̅� 𝑡 + 𝑃 𝑡  (33) 

with 𝜏 = 100 𝑚𝑠, the same as the neuronal time constant. The Exploratory Hebbian 

rule is considered to be biological as it uses only local presynaptic and postsynaptic 

information while the modulatory factor is a sparse scalar value (Hoerzer et al. 2012; 

Legenstein et al. 2010).  
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Importantly, the Hebbian plasticity rule needs to be modulated by the presence of the 

reward so that the coordinates at which a reward is disbursed is learned as the goal 

coordinates. A step function Θ is used to transform the reward value  

 Θ 𝑅 𝑡  = {
1, 𝑅 𝑡 > 0
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (34) 

so that reward modulation is 0 for negative or no rewards or 1 for positive rewards. If 

the trial ends 𝑡 = 𝑇𝑚𝑎𝑥 with no reward 𝑅 𝑡 = 0, a zero target vector 𝑔𝑖
𝑓𝑜𝑟𝑔𝑒𝑡 𝑡  of 

size 3 is used, instead of 𝑔𝑖
𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑒 𝑡 , to associate the cue to a vector that has a recall 

value of zero 

 𝑔𝑖
𝑓𝑜𝑟𝑔𝑒𝑡 𝑡 = [0,0,0] (35) 

The association of the cue to a zero vector can be formed by training the synaptic 

weights using the same equations for associations (Eq. 29–33) with reward modulation 

set to 1.  

3.2.4 NAVIGATE algorithm 

Direct heading is a simple implementation of vector-based navigation. Vector 

subtraction is performed between the goal and agent’s coordinates  

 𝑑𝑗∈{𝑥,𝑦} 𝑡 = 𝑔𝑗∈{𝑥,𝑦} 𝑡 − 𝑝𝑗 𝑡  (36) 

to determine the direction to move towards the goal from an agent’s current position. 

A spatial direction that is closest to the computed vector 𝑑𝑗∈{𝑥,𝑦} 𝑡  is chosen out of the 

40 possible directions defined by the actor (Eq. 11) 

 𝑞𝑙
𝑁𝐴𝑉 𝑡 = softmax(∑𝐾𝑖

𝑎𝑐𝑡𝑖𝑜𝑛𝑠𝑑𝑗

𝑀

𝑗=1

) ∙ 𝜀 𝑡  (37) 
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to directly head towards the goal. If the recall value 𝑔𝑗=3 𝑡  is less than the pre-set 

threshold value of 0.6, the output is suppressed 

 𝜀 𝑡 = {
1, 0.6 < 𝑔𝑗=3 𝑡 

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (38) 

otherwise, the direction of movement 𝑞𝑙
𝑁𝐴𝑉 𝑡  is passed to the actor (Eq. 9) to influence 

the action 𝑎 𝑡 .  

A dataset with different combinations of current 𝑝𝑗 𝑡 , goal and recall values 𝑔𝑗 𝑡  as 

input and the corresponding suppressed or unsuppressed direction of movement 

𝑞𝑙
𝑁𝐴𝑉 𝑡  was generated using the equations 36–38. A feedforward neural network with 

two hidden layers, each with 128 neurons with firing activity transformed using the 

ReLU activation function, and top layer with 40 neurons with linear activation function 

was trained using backpropagation to minimise the mean squared error of the dataset. 

The synaptic weights were fixed and uses as a static module as the agent learned the 

DMP and MPA tasks. 

3.2.5 Learning to gate working memory 

Since sensory cue is given only at the start of the trial in Figure 3.7, a persistent 

representation of the cue is necessary to learn flavour-location associations. A bump 

attractor has been shown to recreate the persistent working memory dynamics in the 

prefrontal cortex (Parthasarathy et al. 2019; Wimmer et al. 2014). The bump attractor 

has 𝑁𝑏𝑢𝑚𝑝 = 54 neurons with firing rate given by 

 𝑢𝑖
𝑏𝑢𝑚𝑝 𝑡 = 𝑅𝑒𝐿𝑈[𝑥𝑖

𝑏𝑢𝑚𝑝
 𝑡 ] (39) 

where the membrane potential 𝑥𝑖
𝑏𝑢𝑚𝑝

 𝑡  has dynamics 
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𝜏�̇�𝑖
𝑏𝑢𝑚𝑝 𝑡 = −𝑥𝑖

𝑏𝑢𝑚𝑝 𝑡 + 𝜒 𝑡 ∙ ∑ 𝑊𝑖𝑗
𝑖𝑛𝑤𝑚𝑢𝑗

𝑐𝑢𝑒

𝑀𝑐𝑢𝑒

𝑗=1

+  ∑ 𝑊𝑖ℎ
𝑏𝑢𝑚𝑝

𝜔[𝑥ℎ
𝑏𝑢𝑚𝑝 𝑡 ] +

𝑁𝑏𝑢𝑚𝑝

ℎ=1

√𝜏𝜎𝑏𝑢𝑚𝑝
2 𝜉 𝑡  

(40) 

with 𝜎𝑏𝑢𝑚𝑝 = 0.1 and nonlinear activation function  

 𝜔 𝑥 = {

0, 𝑥 < 0

𝑥2, 0 < 𝑥 < 0.5

√2𝑥 − 0.5, 𝑥 ≥ 0.5

 (41) 

The synaptic weight 𝑊ℎ𝑗
𝑏𝑢𝑚𝑝 is defined similarly as the lateral connectivity in the 

actor (Eq. 10) to connect the neurons in a ring with 𝑤+ = 2, 𝑤− = −10 and 𝜑 = 300. 

Since the 18 cues are encoded as a one-hot vector, 𝑊𝑖𝑗
𝑖𝑛𝑤𝑚 is specified such that each 

cue activates one unit in the ring using a synaptic weight of 1 and the 𝑊𝑖ℎ
𝑏𝑢𝑚𝑝

 activates 

two adjacent units so that a total of three neurons form a subpopulation to persistently 

maintain each cue information.  

The gating mechanism 𝜒 𝑡  controls the information flow from the sensory cues to the 

bump attractor by either opening the gate to update the working memory with new 

information or closing the gate to maintain the information persistently maintained in 

working memory ( loyd et al. 2 12;  ’ eilly and  rank 2  6; Todd,  iv, and Cohen 

2009). There are two gating neurons, each to update or maintain working memory 

respectively and have the membrane potential dynamics 

 𝜏�̇�𝑖 𝑡 = −𝜗𝑖 𝑡 + ∑𝑊𝑖𝑗
𝑔𝑎𝑡𝑒

𝑟𝑗 𝑡 

𝑁

𝑗=1

+ √𝜏𝜎𝑔𝑎𝑡𝑒
2 𝜉 𝑡  (42) 

and use a softmax selection rule to determine the probability of selecting a particular 

gating action 
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 𝑃𝑔𝑎𝑡𝑒 𝑡 =
exp [𝛽𝑔𝑎𝑡𝑒𝜗𝑖 𝑡 ]

∑ exp [𝛽𝑔𝑎𝑡𝑒𝜗𝑘 𝑡 ]𝑘
 (43) 

with 𝛽𝑔𝑎𝑡𝑒 = 2 and, 𝜋𝑖 𝑡 = 1 if gating action 𝑖 was chosen at time t and 𝜋𝑖 𝑡 = 0 

otherwise. The gating mechanism then updates or maintains working memory by  

 𝜒 𝑡 = {
1, 𝜋1 𝑡 < 𝜋2 𝑡 
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (44) 

opening 𝜒 𝑡 = 1 or closing 𝜒 𝑡 = 0 information flow from the sensory cues to the 

bump neurons. The synaptic plasticity of the weights 𝑊𝑖𝑗
𝑔𝑎𝑡𝑒

is governed by a 3-factor 

temporal difference error modulated Hebbian plasticity rule 

 Δ𝑊𝑖𝑗
𝑔𝑎𝑡𝑒 𝑡 = 𝜂𝑔𝑎𝑡𝑒 ∙ 𝑟𝑗 𝑡 ∙ 𝜋𝑖 𝑡 ∙ 𝛿𝐷𝐴 𝑡  (45) 

using the reservoir’s presynaptic activity, gating policy as postsynaptic activity and 

modulated by the TD error computed by the critic with 𝜂𝑔𝑎𝑡𝑒 = 0.0001 and. All 

synapses that were trained using the Hebbian rule were initialised to zero at the start of 

the simulations.  

3.2.6 Task descriptions 

Random foraging 

The task was to understand how LEARN METRIC REPRESENTATION schema uses 

place cell activity to learn a continuous metric representation. The agent had 49 place 

cells and coordinate cells representing X and Y axis.  

The agent moves within a spatially continuous two-dimensional square arena bounded 

by walls of length 1.6m with possible agent positions 𝑥 =  ±0.8 𝑚,±0.8 𝑚 . At the 

start of each trial, the agent’s current coordinate estimation was reset to zeros while its 

position drawn with equal probability from midpoints of the found boundary walls. The 
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agent moves by executing time-dependent actions 𝑎 𝑡  from a random policy that 

affect its velocity according to  

 �̇� 𝑡 = 𝑎 𝑡  (46) 

 sing  uler’s method of discretization with time step ∆𝑡, this results in position updates 

 𝑠 𝑡 + ∆𝑡 = 𝑠 𝑡 + ∆𝑡 ∙ 𝑎 𝑡  (47) 

If the updated position ends up outside the area, the agent moves 0.01 𝑚 inwards 

perpendicular to the closest boundary from its last position given by �̂� 𝑡 . The agent 

explored the maze over 20 trials for 30 seconds. Synaptic plasticity from place cells to 

the coordinate cells was switched on according to Eq. 23 

To assess the learning of metric representation, the synaptic weights, true state 

coordinates and agent estimated current coordinates were plotted for trials 2, 9 and 20. 

Associating cues to coordinates 

This task required the reservoir with three readout units to associate up to 50 one-hot 

vector cue inputs with 50 goal coordinates randomly drawn from a uniform distribution 

between [-1,1]. The task was split into two phases, association and recall, where the 

cue was persistently presented.  

During the association phase, the goal coordinate concatenated with a value of one for 

example [0.4, -0.2, 1], was set as the target vector 𝑔𝑖
∗ 𝑡 . Synaptic plasticity governed 

either by the Exploratory Hebbian or Least Mean Squares (LMS) rule was switched on 

for five seconds. There after plasticity was switched off to determine if the network 

was able to maintain the learned goal coordinates for five seconds. 1 up to 50 cues were 

presented for association before the recall phase.  

 uring the recall phase, the reservoir’s internal activity was reset by drawing each 

unit’s membrane potential from a  aussian distribution with zero mean and variance 
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0.1 and the cue was presented as input to the network. The one-shot recall error was 

determined by taking the mean square error between the target 𝑔𝑖
∗ 𝑡  and the readout 

neuron activity 𝑔𝑖 𝑡 .  

To delete cue specific association, the target vector was set to zeros [0, 0, 0] and 

synaptic plasticity was switched on for the reservoir to associate the cue input to a zero 

vector. The number of neurons within the reservoir was increased incrementally from 

128 to 2048 to assess if the size of the reservoir affecting the one-shot learning and 

recall accuracy.  

Displaced match to place (DMP) 

Following Steele and Morris (1999), the task involved navigating to a single goal in 

the square maze described in random foraging. A goal location is randomly chosen out 

of 49 possible reward locations distributed throughout the maze such that the centres 

of possible locations are 0.2 𝑚 from each other or a boundary. All possible reward 

locations are circles with a radius of 0.03 𝑚. A session constitutes of four trials where 

the goal remains in the same location. In the following session, a new goal location is 

chosen. Agents solved the task over nine sessions. 

The agent is free to explore the area for a maximum duration 𝑇𝑚𝑎𝑥 per trial. If it finds 

the reward before  𝑇𝑚𝑎𝑥, the agent remains stationary until the trial ends to model 

consummatory behaviour. After the agent reaches the reward, a total reward value 𝑅 =

5 is disbursed at a reward rate 𝑅 𝑡  defined by  

 
�̇�𝑑𝑒𝑐𝑎𝑦 𝑡 = −

𝑅𝑑𝑒𝑐𝑎𝑦 𝑡 

𝜏𝑑𝑒𝑐𝑎𝑦
;  �̇�𝑟𝑖𝑠𝑒 𝑡 = −

𝑅𝑟𝑖𝑠𝑒 𝑡 

𝜏𝑟𝑖𝑠𝑒
 

(48) 

 
𝑅 𝑡 =

𝑅𝑑𝑒𝑐𝑎𝑦 𝑡 − 𝑅𝑟𝑖𝑠𝑒 𝑡 

𝜏𝑑𝑒𝑐𝑎𝑦 − 𝜏𝑟𝑖𝑠𝑒
 

(49) 
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With 𝜏𝑟𝑖𝑠𝑒 = 100 𝑚𝑠 and 𝜏𝑑𝑒𝑐𝑎𝑦 = 250 𝑚𝑠. When the agent reaches the reward, 

instantaneous updates 

 𝑅𝑟𝑖𝑠𝑒 𝑡 → 𝑅𝑟𝑖𝑠𝑒 𝑡 + 𝑅;𝑅𝑑𝑒𝑐𝑎𝑦 𝑡 → 𝑅𝑑𝑒𝑐𝑎𝑦 𝑡 + 𝑅 (50) 

Are made such that 𝑅 𝑡  integrate to 𝑅. To prevent infinitely long trials, trials in which 

the reward is reached before 𝑇𝑚𝑎𝑥 are terminated when 𝑅 − 1−8of the reward has been 

consumed. Trials in which the reward is not reached before  𝑇𝑚𝑎𝑥 are terminated at 

𝑇𝑚𝑎𝑥. 

Single goal with obstacles  

The actor-critic algorithm allows an agent to navigate past obstacles for single goals 

(Frémaux et al. 2013), while the NAVIGATE scheme only affords direct heading. To 

determine if a combination of actor-critic and schema could improve an agent’s 

navigation capability, the task was to navigate past obstacles to a single goal found at 

the centre of the arena with coordinates  0, 0 . The goal was surrounded on three sides 

by an inverted U-shaped obstacle with width 0.08 𝑚 and length 0.6 𝑚. The agent’s 

starting positions was constrained to either the north, east or west of the arena to remove 

trials which the agent could solve by direct heading. The total reward value was reduced 

to 𝑅 = 1 while following the same reward rate as in Eq. 49 The rest of the task 

parameters remained the same as in the DMP task. 

Multiple paired associations (MPA)  

To model Tse et al. (2007), the same task parameters were used as in the DMP task and 

in Kumar et al. (2022) except each session comprised of six trials with each of the six 

possible cues were given to the agent in a random sequence. Cues were given to the 

agent throughout the trial while the total reward value was kept at 𝑅 = 5 and followed 

the reward rate disbursement in Eq. 49. 
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MPA with obstacles 

To increase the complexity of the navigation task, obstacles were introduced to the 

multiple paired association arena. The arena was divided in the centre by an obstacle 

with width 0.08 𝑚 and length 0.8 𝑚 with two parallel obstacles from the west to east 

of width 0.08 𝑚 and length 0.68 𝑚. These obstacles did not cover the goal locations 

as in the original paired association, new paired association and new maze 

configuration described in Tse et al. (2007). The same task parameters were used as in 

the MPA task though the total reward value was kept at 𝑅 = 1. 

Table 2: Possible starting positions for trials with specific FLAVOUR-

LOCATION pairs.  

Cues given during trial Possible starting positions 

1, 4, 5, 7, 11, 13, 14 East 

3, 4, 5, 6 ,8, 15, 16 North 

2, 3, 6, 8, 12, 15, 16 West 

1, 2, 3, 4, 7, 11, 12, 13, 15 South 

 

To prevent the agents from reaching the goals by direct heading, the starting position 

of the agent was constrained to Table 2 so that the goal can only be reached by 

navigating past obstacles. For example, the starting position for cue 1 is randomly 

chosen to either be the east or south while starting position for cue 2 is either the west 

or south. 

MPA with transient cue and distractor  

To fully replicate the biological experimental conditions in Tse et al. (2007), the flavour 

cue was given to the agent one second after the trial started for two seconds. During 
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this cue presentation period, the place cell activity and agent’s actions were silenced to 

simulate the rat in the starting box with no knowledge of its position in the maze. The 

sensory cue was then switched off, setting the sensorial cue activity to zero and place 

cell activity and agent’s actions switched on for navigation.  The task relevant cue was 

not given to the agent thereafter. Instead, distractor cues 17 and 18 were chosen 

randomly and presented six seconds after navigation has commenced at the frequency 

of 0.2 𝐻𝑧. The distractor was presented for one second and either once or twice within 

a trial. 

Code availability 

Code for all our models and simulations are available at 

https://github.com/mgkumar138/Schema4One.  

3.3 Result 

We begin by describing three schemas, LEARN METRIC REPRESENTATION, 

LEARN FLAVOUR-LOCATION and NAVIGATE. Thereafter, we verify the ability 

of three agents, Actor-Critic, Symbolic and Neural, to learn the displaced match to 

place (DMP) task which requires agents to navigate to a single goal that is displaced to 

a new location every four trials. We then demonstrate the ability of these agents and 

hybrid actor-critic-schema agents to navigate to a single goal enclosed by obstacles. 

Subsequently, we study the ability of the three agents to demonstrate one-shot learning 

in the multiple paired associations (MPA) task in an open arena. Next, we demonstrate 

the ability of the hybrid agents to navigate past obstacles and learn new PAs after a 

single trial. Finally, we demonstrate that a gating policy can be learned using the reward 

prediction error to ignore distractors and pass only the relevant cue information into a 

bump attractor to solve the multiple PA task. This task resembles the biological 

experiments where the sensory cue is presented only at the start of each trial, requiring 

the agent to hold the task relevant cue in working memory. 

https://github.com/mgkumar138/Schema4One
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3.3.1 Schemas for one-shot navigation to multiple goals 

Here, we elaborate on three schemas necessary for one-shot navigation to multiple 

goals, by outlining the computational problems they solve, the symbolic algorithm and 

the corresponding neural implementation.  

LEARN METRIC REPRESENTATION schema 

The first schema is to learn a metric representation of the environment which the agent 

can use to self-localize and subsequently compute the direction to a goal from any 

arbitrary location. Although place cells and grid cells provide self-localization 

information, the former is arbitrarily anchored to environmental landmarks while the 

latter is a noncontinuous, binned representation of space (Moser, Kropff, and Moser 

2008).  These representations make it difficult to compute translation vectors from any 

position to a goal (Fiete et al. 2008), especially for distant locations (Bush et al. 2015). 

Instead, by transforming the place or grid cell activity to a continuous spatial metric, 

distance and direction to a goal can be efficiently calculated using vector subtraction, 

reducing the need to search through previously used solutions or needing a lookup table 

(Bush et al. 2015; Fiete et al. 2008; Foster et al. 2000).  
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Figure 3.1. Schemas for one-shot navigation to multiple goals. A schema is a 

framework that specifies the relationship between information and actions to solve a 

particular computation. A) An agent can use the LEARN METRIC 

REPRESENTATION schema to learn a continuous metric representation of the arena 

in the form of X and Y coordinate cells to self-localize and facilitate vector-based 

navigation by NAVIGATE schema. Place cells anchor the metric representation (Eq. 

18). The synapses from place cells to X, Y coordinate cells are learned by minimising 

a path integration temporal difference error using a two-factor Hebbian rule (Eq. 23). 

B) The LEARN FLAVOUR–LOCATION schema associates flavour cues to goal 

coordinates after one trial such that when the same cue is given in the following trial, 

the schema can be used to recall the corresponding goal coordinates. Synapses from a 

reservoir to three readout units can be modified using the 4-factor reward-modulated 

Exploratory Hebbian (EH) rule (Eq. 30) to learn FLAVOUR–LOCATION associations 

after one trial. The first two units learn the X and Y goal coordinates while the last 

learns a value of one.   perfect recall is when the third unit’s activity approaches a 

value of one when a cue is given. C) The NAVIGATE scheme performs vector 

navigation by taking arbitrary current and goal coordinates as input, perform vector 

subtraction (Eq. 36) and output the direction of movement (Eq. 37). The NAVIGATE 

computation occurs only when the recall value is greater than the threshold of 0.6 (Eq. 

38). A deep neural network was trained by backpropagation to perform these 
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computations. The synapses of the pre-trained network were fixed since no new 

learning was necessary to solve the navigation task. 

 

Using the LEARN METRIC REPRESENTATION schema, an agent can gradually 

learn a metric representation in the form of X, Y coordinates using place cells (Eq. 18 

and Fig. 3.1A), or grid cells that have location specific firing activity. This can be 

reformulated into a path integration learning problem. The agent computes a path 

integration derived temporal difference (TD) error 𝛿𝑖∈{𝑥,𝑦}
𝑐𝑜𝑜𝑟𝑑  𝑡  in the X and Y axis by 

integrating self-motion information and an estimation of the current and previous 

coordinates in the arena (Eq. 21). The smooth transitions in place cell activity are 

captured though an eligibility trace (Eq. 22) and the path integration TD error is 

minimised using the two-factor Hebbian plasticity rule with the eligibility trace as the 

presynaptic factor modulated by the temporal difference error (Eq. 23).  

As the agent explores the arena, the path integration TD error is gradually minimised 

(Supplementary Fig. 3.1A) till the synaptic weights from the place cells to coordinate 

cells converge to a stable representation (Fig. 3.2A top). When the agent moves left to 

right or bottom to top, the firing activity of the X and Y coordinate cells respectively 

increase linearly. This translates to an increasing similarity between the agent’s 

coordinate estimation of its current position and the true state coordinates (Fig. 3.2A 

bottom).  

LEARN FLAVOUR–LOCATION schema 

The second schema LEARN FLAVOUR-LOCATION is to associate flavour cues to 

goal coordinates after one trial such that the same goal coordinate is accurately recalled 

in the subsequent trial. If an agent is rewarded at a particular location, the agent’s 

current coordinates are stored as the goal coordinates. The presence of a reward is used 

to gate the association of the flavour cue and goal coordinates.  
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The symbolic agent uses a key–value matrix to store the flavour cue vector and the 

concatenated goal coordinates with recall value of one in the key and value matrix 

respectively (for example cue 2 in Fig. 3.2B). In the subsequent trial when a flavour 

cue is given, a distance-based metric (Eq. 24) is used to compare the cue-based query 

against the key matrix to identify the memory index. This memory index is used to 

recall the correspondingly stored goal coordinates from the value matrix (Eq. 25). If 

recall is accurate, the recall value will be close to 1, and if recall is imperfect, the recall 

value will be closer to 0. If the agent navigates to the goal coordinate and reward is not 

disbursed before the trial ends, the association is deleted by setting flavour cue and goal 

coordinates in that memory index to zeros (Fig. 3.2B cue 8). Hence, a key-value matrix 

allows writing and deleting specific flavour-location associations after one-trial. 

A reservoir of recurrently connected neurons with three readout units (Eq. 27) can be 

trained to perform one-trial association. To associate a flavour cue to goal coordinates, 

the agent’s current coordinates concatenated with a value of one (Eq. 28) is treated as 

the target vector 𝑔𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑒 𝑡 . Synapses from the reservoir to the readout neurons can 

either be trained by least mean squares (LMS) algorithm (Eq. 28) (Kumar et al. 2021) 

or a more biologically plausible 4-factor reward-modulated Exploratory Hebbian rule 

(Eq. 30) adapted from Hoerzer et al., (2012). The 4th factor, which is the presence or 

absence of a reward, is crucial to ensure that the association between the flavour cue 

and agent’s current coordinates is learned only when a positive reward is disbursed.  
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Figure 3.2. Representations learned using LEARN METRIC 

REPRESENTATION and LEARN FLAVOUR-LOCATION schema. A) As the 

agent explored the arena, the synaptic weights from 49 place cells to the X and Y 

coordinate cells converged to a stable representation in the two axes of movement (top). 

Using the synaptic weights in trial 20, when the agent moved right to left or bottom to 

top, the firing rates of the X or Y coordinate cells increased respectively. Hence, the 

agent’s ability to self-localize gradually improved to show a higher correspondence 

with true state coordinates. B) The symbolic agent used a key-value matrix and a 

distance metric to store and recall cue associated goal coordinates. Goals that were not 

rewarded were deleted based on the memory index. C) Sufficiently large reservoir (> 

512 units) can be trained (using LMS or EH rule) to store and recall up to 50 cue-

coordinate paired associations. Although storing more paired associations leads to a 

monotonic increase in recall error, the recall remains stable and exhibits smooth 

capacity–accuracy trade-off. D) Example activity of the three reservoir readout units 

(X coordinate – blue, Y coordinate – orange, recall value – green) that were trained 

using the Exploratory Hebbian rule to associate, recall, and forget cue-coordinate 

associations. Plasticity was switched on for 4 seconds from red dashed line to black 

dashed line to store arbitrary coordinates. Thereafter plasticity was switched off and 

the network maintained the activity up to 4 seconds. The gap between readout activities 

for each cue indicates the reservoir membrane potential being reinitialised with random 
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activity and cue presented to recall the associated coordinate. To forget cue specific 

associations, plasticity was switched on (magenta to black dashed lines) with the zero 

vector as the target. Forgetting cue specific goal associations (cue 2 and cue 4) did not 

affect the recall accuracy of other association pairs. 

 

Reservoirs with three readout units were trained (𝑁 = 24) to learn one up to 50 cue-

coordinate associations for one trial and subsequently the cues were given as input to 

verify the recall error. The mean square error to recall 50 cue-coordinate pairs 

decreased from 0.256 ± 0.030  𝑆𝐷  to 0.052 ± 0.022  𝑆𝐷  as the number of units 

within the reservoir increased from 128 to 2048 (Fig. 3.2C). The size of the reservoir 

affected the capacity to learn paired associations after one trial (one-way ANOVA for 

50 PAs, 𝐹 = 284, 𝑝 < 0.001). Reservoir with 1024 neurons, trained by the 4-factor 

EH rule learned one to 50 flavour-location associations as well as the LMS rule 

(person’s correlation 𝑅 = 1.0, 𝑝 < 0.001). Unlike autoassociate networks which suffer 

from catastrophic loss of all patterns once memory cliff is reached (Sharma, Chandra, 

and Fiete 2022; Tyulmankov et al. 2021), the recall error increased monotonically when 

more cue-coordinate pairs were learned, from 0.025 ± 0.007 𝑠. 𝑑. for 10 PAs to 

0.054 ± 0.024 𝑠. 𝑑. for 5  P s ( elch’s t-test, 𝑇 = 5.67, 𝑝 < 0.001).  

Moreover, the reservoir with readout units can be trained to delete specific cue-

coordinate association, like the key-value matrix. Instead of associating the cue to 

coordinates, the cue can be associated with a zero-target vector 𝑔𝑓𝑜𝑟𝑔𝑒𝑡 𝑡 = [0,0,0] 

using the same synaptic plasticity rule. Figure. 3.2C shows that when synaptic plasticity 

was switched on (red dashed line) to learn cue-coordinate association, the readout units 

of the reservoir converged to specific X (blue trace), Y (orange trace) coordinates and 

recall value of 1 within 3 seconds and was maintained after plasticity was switched off 

(black dashed line). When the reservoir was reset with random activity and presented 

with the same cue, the readout units recalled the associated goal coordinates with a 

recall value close to 1 (green trace). When cue 2 and cue 4 associations were deleted 
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using the zero-target vector (magenta dashed line), the activity of the three readout 

units fell to zero. More importantly, the deletion of cue 2 and cue 4 associations did not 

affect the recall of cue 1, cue 3, cue 5 and cue 6 goal coordinates.  

NAVIGATE schema 

The NAVIGATE schema performs three computations, (1) vector subtraction (Eq. 36) 

between the goal and current coordinates to determine the distance and direction to the 

goal from the current location (2) choose a relevant action (Eq. 37) that will bring the 

agent closer to the goal via direct heading and (3) suppress the action if the recall value 

falls below the threshold value of 0.6 (Eq. 38). These computations allow the agent to 

head directly to a goal coordinate from any location, even if it had not traversed that 

path location prior. This is similar to  umelhart’s (19  ) description of a schema where 

any combination of coordinates can be slotted in to the schema placeholders to infer 

the direction to move. Vector subtraction and the corresponding action is chosen only 

if the recall value is greater than a threshold value of 0.6. If the recall accuracy is poor 

such that the recall value falls below the threshold, the output direction vector is 

suppressed by returning a zero vector, without specifying the direction of movement.  

We pretrained a network with two nonlinear hidden layers each with 128 units using 

backpropagation on a dataset comprising different current, goal coordinates and recall 

values as inputs and the relevant action to take, computed symbolically (Eq. 36–38) as 

outputs. The network weights were fixed throughout the DMP and MPA tasks (purple 

arrows in Fig. 3.1C and Fig. 3.3A). 

 

3.3.2 One-shot learning to single displaced goal 

We begin by verifying if a reservoir-actor-critic agent trained using the temporal 

difference error (Kumar et al. 2022) and agents that combined the three schemas 
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outlined in Fig. 3.1 can learn to navigate to a goal that is displaced to a new location 

after four trials. In each trial, the agent starts at a randomly chosen midpoint of the 

north, south, east, or west boundaries of a 1.6 𝑚2 arena and receives the same sensory 

cue on every timestep till it reaches the reward location.  

All agents have rate-based neurons and receive input from place cells that encode the 

animal’s location in the arena and sensory cue 1. They have an actor made up of 

neurons connected in a ring whose output dictates the speed and direction of agents.  

The actor-critic agent (Fig. 3.3A left) has an additional critic output that learns a value 

function to compute the reward prediction error (Eq. 15). Only the synapses from the 

reservoir to the actor and critic are subject to TD error modulated Hebbian rule (see 

Methods).  

Both the symbolic and neural schema agents learn the metric representation using place 

cells as inputs and the synapses that project to the X and Y coordinate cells are subject 

to the path integration TD error modulated Hebbian rule (Eq. 23). The symbolic agent 

(Fig. 3.3A middle) uses a key-value matrix to store sensory cue 1 and the coordinates 

at which the reward was disbursed at memory index 1 in the key and value matrices 

respectively (Fig. 3.2B). Using sensory cue 1 and a distance metric, memory index 1 is 

identified in the key matrix (Eq. 24) and the goal coordinate is recalled from the value 

matrix ( q. 25). The agent’s current coordinates and recalled goal coordinates are 

passed to the symbolic NAVIGATE schema to determine the direction to move (Eq. 

37) before passing the direction information to the actor (Eq. 9). The reservoir in the 

neural agent (Fig. 3.3A right) takes in both sensory cue and place cell activity as inputs 

and learns the cue-coordinate associations using the 4-factor reward-modulated 

Exploratory Hebbian rule (Eq. 30) and its current coordinates as the target (Eq. 28). 

The coordinates learned by LEARN METRIC REPRESENTATION schema and the 

goal coordinates recalled using the LEARN FLAVOUR-LOCATION schema is fed to 
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the NAVIGATE schema neural network to determine the distance and direction of 

movement which is passed as inputs to the 40 actor neurons, similar to the symbolic 

agent.  

Figure 3.3B shows that only the symbolic and neural schema agents showed 

significantly higher savings in latency between the first and second trials compared to 

the actor-critic (𝑝 < 0.001) after the third session (average savings in latency from 

session 5 to 9, 117 ± 10 𝑠 for symbolic, 84 ± 8 𝑠 for neural), demonstrating one-shot 

learning of displaced location. The one-shot learning behaviour emerged over 12 trials 

as the schema agents gradually learned the metric representation to accurately navigate 

to the goal coordinates. The actor-critic agents showed gradual learning of the goals as 

the synaptic weights were incrementally updated to converge to a particular value and 

policy map. 

The symbolic schema agent showed significantly higher savings in latency (𝑡 =

105, 𝑝 < 0.001) compared to the actor-critic from the first session compared to the 

neural agent which initially showed worse savings in the first (𝑡 = −208, 𝑝 < 0.001) 

and second  (𝑡 = −7, 𝑝 < 0.001) sessions but showed significant savings session 3 

onwards (𝑡 = 181, 𝑝 < 0.001).  
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Figure 3.3. One-shot learning of delayed match to place (DMP) task by schema 

agents. A) Architecture of Actor-Critic (left), Symbolic (centre) and Neural agents. 

Synapses from the reservoir to the actor and critic were trained using temporal 

difference error modulated Hebbian plasticity adapted from (Kumar et al. 2022). In 

both the symbolic and neural agent, the synapses from place cells to coordinate cells 

were learned using path integration temporal difference error modulated Hebbian 

plasticity. The symbolic agent uses a symbolic Key-Value memory system whereas the 

neural agent uses a reservoir with readout synapses trained using reward gated 

Exploratory Hebbian rule to store and recall the goal coordinates. For the DMP task, 

all agents were given cue 1 throughout the trial B) Actor-Critic and neural schema agent 

architecture adapted from Foster et al., 2000 and Kumar et al., 2022. Place cell activity 

is passed to coordinate cells and these synapses are learned using the velocity based 

temporal difference error modulated Hebbian plasticity (Foster et al. 2000). C) As an 

agent explores its environment, it uses self-motion information and place cell activity 

to estimate its current coordinates. Synapses from place cells to X and Y coordinate 

cells eventually converge to represent the X and Y axis respectively. D) Estimated 

coordinates resemble true coordinates as learning progressed. E) Latency (left) to reach 

single target that is displaced every 4 trials and difference in latency (right) between 

trials 1 and 2. Agents include Actor–Critic trained by temporal difference error 
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modulated Hebbian plasticity (pink), Symbolic schema agent using NAVIGATE 

schema in Fig. 3.1C (blue) and symbolic memory matrix to store target coordinates, 

and Neural schema agent using pretrained neural network in Fig. 3.2A and target 

coordinates learned using 4-factor Exploratory Hebbian rule (orange). Both Symbolic 

and Neural schema agents show one-shot learning of displaced targets session 2 

onwards. Error bars indicate standard error. F) Example trajectories of each agent (row) 

during the probe trial conducted after 4 training trials as the target changed over 9 

sessions. 480 simulations per agent with error bars indicating standard error.  

 

However, the average latency to reach a newly displaced goal in the first trial of each 

session was significantly lower for the neural agent compared to the symbolic agent 

(𝑡 = −24.3, 𝑝 < 0.001), while the average latency to reach the same goal in the second 

trial of the same session was comparable (𝑡 = −2.48, 𝑝 = 0.0134). Although the 

symbolic agent showed higher savings in latency, the neural agent was more effective 

in finding the newly displaced goal in the first trial of each session compared to the 

symbolic agent. Since place cell activity was also passed as inputs to the reservoir, as 

the agent moved, place cell activity changed and the recall accuracy of goal coordinates 

wavered between 0.6 to 1 (Supplementary Fig. 3.1B), causing the agent to switch 

between using the NAVIGATE schema to exploit the recalled goal or to a random 

policy to explore the arena. Furthermore, the stochasticity in goal coordinate 

representation (Eq. 27) with 𝜎𝑔𝑜𝑎𝑙 = 0.05 when recalling the goal location which is 

0.03 𝑚 in radius allowed the agent to better explore the goal location compared to the 

symbolic agent that had no stochasticity in goal representation.  

Figure 3.3C shows the example trajectory of the three agents during the nonrewarded 

probe trial after the 4th trial within a training session. The actor-critic agent shows a 

dispersed trajectory throughout the nine sessions. The symbolic agent heads directly 

towards the goal, however, the trajectory is suboptimal initially as the agent has not 

learned a stable metric representation. Hence, the agent uses incorrect coordinates for 

its current and goal positions to perform vector navigation. For example, in PT 2 and 

PT3, the symbolic agent misses the goal and spends a longer time at the boundary of 
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the arena. Navigation to the goal improves after PT3. When the symbolic agent fails to 

find the goal during the training session, it resorts to a random policy e.g. PT5. The 

neural agent shows a dispersed trajectory in PT1 and PT2, but the accuracy of 

navigating towards the goal improves after PT3, like the symbolic agent. 

3.3.3 Faster navigation past obstacles to single goal by hybrid agents 

Although both symbolic and neural agents perform one-shot learning of single 

displaced goals, we subsequently compared their ability to navigate past obstacles to a 

single goal in the centre of the arena. During each trial, agents started from either the 

north, east or west midpoints of the arena so that a direct path towards the goal was 

excluded. Training was organised over 60 trials with 18 probe trials during trials 7-12, 

30-36 and 54-60. 

Besides the actor-critic and schema agents from Figure 3.3A, two additional hybrid 

actor-critic-schema agents were developed. The first variant used the symbolic 

implementation, and the second variant used the neural implementation (Fig. 3.4A) of 

the LEARN FLAVOUR-LOCATION association and NAVIGATE schemas. The actor 

received inputs from both the reservoir and the NAVIGATE schema (Eq. 9). The 

contributions by both inputs was optimised using 𝛽𝑐𝑜𝑛𝑡𝑟𝑜𝑙 where 𝛽𝑐𝑜𝑛𝑡𝑟𝑜𝑙 = 0.3 means 

the input to the actor is 30% from the NAVIGATE schema and 70% from the linearly 

combined reservoir activity. 𝛽𝑐𝑜𝑛𝑡𝑟𝑜𝑙 = 0 represents a pure actor-critic agent while 

𝛽𝑐𝑜𝑛𝑡𝑟𝑜𝑙 = 1 represents a pure schema agent. The temporal difference error time 

constant was increased from 3000 𝑚𝑠 to 10,000 𝑚𝑠 and learning rates were optimised 

according to Table. 1 in Methods.  
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Figure 3.4. Navigating to a single goal past obstacle using a combination of model-

free and schema methods. A) Two hybrid actor-critic-schema architectures were 

developed where actor-critic and symbolic (left) or neural (right) schema algorithms 

were combined. The actor takes in input from either the reservoir (𝛽 = 0), the 

NAVIGATE schema (𝛽 = 1) or a linearly weighted combination of both (𝛽 = 0.3) to 

navigate. Agents start either at the north, east or west of the maze and must navigate to 

the goal in the centre to obtain a reward. B) Agents that used the actor-critic algorithm 

either solely (pink) or as a combination with schemas (actor-critic-symbolic – purple, 

actor-critic-neural – green) showed consistent decrease in latency to reach the goal 

(top) and spent a higher proportion of time at the goal during the probe trials (bottom) 

whereas pure schema agents (symbolic – blue, neural – orange) failed to navigate past 

the obstacle. Agents that used a combination showed faster decrease in latency and 

spent a significantly higher amount of time at the goal location. C) Example trajectories 

(top) during probe trials 1 (yellow), 2 (light green) and 3 (green) show both actor-critic 

(𝛽 = 0) and actor-critic-schema agents (𝛽 = 0.3) choosing different actions to 

navigate past obstacles and towards the goal, while the pure schema agents (𝛽 = 1) 

move only by direct heading and get stuck at the obstacle. The policy (white arrows) 

and value (heatmap) maps (bottom) show the firing activities of the actor and critic 

respectively. The value map shows which states are more likely to lead to the reward, 
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which can be used to learn a suitable policy to navigate past obstacles. The pure actor-

critic learns a relevant policy while the pure schema agents show an optimal policy 

when there is no obstacle to block the goal. Agents that use a combination of algorithms 

learn a mixed policy between the pure actor-critic and schema agents. 240 simulations 

per agent, shaded area indicates 25th and 75th quantiles while error bars indicate 

standard error. 

 

Figure. 3.4B shows the latency required to reach the goal in the centre (top) and the 

average amount of time spent at the goal location during the probe trials (bottom). Only 

the latency of the actor-critic, actor-critic-symbolic and actor-critic-neural agents 

decreased to 46 𝑠 ± 34  𝑆𝐷 , 43 𝑠 ± 37  𝑆𝐷  and 44 𝑠 ± 40  𝑆𝐷  respectively in the 

last trial and spent an increasing amount of time at the goal as learning progressed, 

while the pure symbolic and neural agents showed no improvement in navigation 

performance with latency in the last trial being 227 𝑠 ± 100  𝑆𝐷  and 140 𝑠 ±

99  𝑆𝐷  respectively.  

The actor-critic agent navigates past obstacles as it learns actions based on the state it 

is in (Frémaux et al. 2013). Figure 3.4C shows the example trajectory (top) and the 

critic and actor firing activity (bottom) visualised as a value and policy map for all 

agents (left to right) during PT3. For the pure actor-critic agent, the critic learns a 

suitable value function to represent the region in the arena that will lead to a reward 

and the actor learns a suitable policy to navigate past the obstacles and to the goal.  

The pure symbolic agent initially reached the goal, but performance worsened after 

PT1. This is because in the initial trials, the schema agent was still learning the metric 

representation, hence the direct heading specified by the NAVIGATE schema did not 

directly lead to the goal and instead caused the agent to meander (Fig. 3.4C yellow 

trajectory for symbolic 𝛽𝑐𝑜𝑛𝑡𝑟𝑜𝑙 = 1). In the subsequent trials, as the metric 

representation converged, the NAVIGATE schema specified the agent to head directly 

to the goal. However, using a direct heading policy cause the agent to get stuck at the 
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obstacle for the entire trial (Fig. 3.4C green trajectories for symbolic 𝛽𝑐𝑜𝑛𝑡𝑟𝑜𝑙 = 1), 

until the goal coordinate was deleted at the end of the trial when no reward was 

disbursed. Although the pure neural agent also moved by direct heading, the 

stochasticity in the goal representation and variable recall value with changing place 

cell activity caused the agent to straddle between exploiting the goal using the 

NAVIGATE schema and exploring the arena using a random policy (Fig. 3.4C green 

trajectories for neural 𝛽𝑐𝑜𝑛𝑡𝑟𝑜𝑙 = 1). However, the pure neural agent was unable to 

demonstrate learning of the task as the actor-critic agent. The pure schema agents 

learned value and policy maps as the agent architecture was that shown in Figure 3.4A. 

However, the policy for pure schema agents was not governed by the actor as 𝛽𝑐𝑜𝑛𝑡𝑟𝑜𝑙 

was set to 1.  

Only the hybrid actor-critic-symbolic agent 𝛽𝑐𝑜𝑛𝑡𝑟𝑜𝑙 = 0.3 showed faster decrease in 

latency (one-way ANOVA 𝐹 = 37, 𝑝 < 0.001) while the actor-critic-neural agent’s 

latency was comparable to the pure actor-critic agent (one-way ANOVA 𝐹 = 2.97, 𝑝 =

0.0887). However, both actor-critic-symbolic (PT1: 𝑡 = 300, 𝑝 < 0.001, PT1: 𝑡 =

179, 𝑝 < 0.001, PT1: 𝑡 = 133, 𝑝 < 0.001) and actor-critic-neural (PT1: 𝑡 = 95, 𝑝 <

0.001, PT1: 𝑡 = 72, 𝑝 < 0.001, PT1: 𝑡 = 52, 𝑝 < 0.001) agents spent significantly 

higher amount of time at the goal location during the probe trials compared to the actor-

critic. 

The value and policy map for the hybrid schema agents show a mixed policy, partly 

contributed by the actor-critic and partly contributed by the schema agents. This could 

facilitate a more optimal policy where the agents navigated away from the obstacle and 

quickly turned up to move towards the goal by direct heading in the absence of the 

obstacle (Fig. 3.4C). Hence, the hybrid actor-critic-schema agents can navigate past 

obstacles by learning state-based actions while showing faster navigation to the goal 

when a direct path is available. 
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3.3.4 One-shot learning of multiple new paired associations 

Having shown that both the symbolic and neural schema agents demonstrate one-shot 

learning for single goals in an open arena, we verify their ability to learn multiple new 

flavour-location paired associations in comparison to the reservoir-actor-critic agent. 

The task was split into two-parts, the first was to learn six flavour-location paired 

associations over 20 sessions and the second was to substitute either two (2NPA) or six 

(6NPA) new flavour-location combinations with the original paired associations 

(OPA). During each trial, one of six cues was presented throughout, and the agent 

received a reward only if it reached the correct goal location (insets in Fig. 3.5A right 

and Fig. 3.5B shows reward location corresponding to the cue). OPA training was 

organised into 20 sessions, each consisting of six trials across which the agent was 

exposed to six cues in random order. The 2NPA and 6NPA training was organised into 

2 sessions, the first to learn the new paired associates and the second was a 

nonrewarded probe.  
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Figure 3.5. Gradual then one-shot learning of multiple new paired associations by 

schema agents. A) The actor-critic (pink), symbolic (blue) and neural (orange) agents 

demonstrated a gradual decrease in the average latency to reach six cue specific goals 

and spent an increasing ratio of time spent at the correct target across probe sessions 

PS1, PS2 and PS3. B) After 20 training sessions, agents had one training session 

followed by a probe for three flavour-location combinations, Original Paired 

Associations (OPA), 2 (2NPA) and 6 New Paired Associations (6NPA). All agents 

showed above chance visit ratios for the OPA condition while only the symbolic and 

neural agents showed above chance visit ratios during the 2NPA and 6NPA conditions, 

demonstrating one-shot learning of two and six new PAs. Chance performance was 

16.7% (one out of six targets visited). C) After 20 sessions of training in the OPA 

condition, agents were introduced to 12 new PAs for a single trial with reward locations 

randomly chosen out of 43 positions. Actor-Critic agents learned at most two goals 

while the Symbolic agent learned up to 11 goals. Neural agents showed an increase in 

one-shot learning capacity when the size of the reservoir was increased from 128 to 

1024 units. D) Example trajectories during probe sessions PS1, PS2, PS3 and the 

subsequent probe sessions OPA, 2NPA and 6NPA. Although all agents navigate to 

OPA, only the symbolic and neural agents learned the new flavour-location PAs during 

the 2NPA and 6NPA configurations. E) Actor-Critic agent could not learn distinct 

value and policy maps after a single trial to navigate to cue 7 and cue 11 goals while 

both symbolic and neural agents showed cue specific maps after a single trial of 

learning. 240 simulations per agent, shaded area indicates 25th and 75th quantiles while 

error bars indicate standard error. 
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Learning rates and TD error time constants were optimized to maximise the actor-critic 

agent’s learning performance (see Table 1 in Methods). Figure 3.5A shows that the 

latency required to reach all six goals (left) across sessions gradually decreased to 

33 𝑠 ± 26  𝑆𝐷 , 61 𝑠 ± 46  𝑆𝐷  and 39 𝑠 ± 33  𝑆𝐷  for the actor-critic, symbolic 

and neural schema agents respectively during the OPA condition. During the 

nonrewarded probe sessions, visit ratio was calculated as the amount of time spent 

within 0.1 𝑚 from the centre of the correct goal divided by the time spent within 0.1 𝑚 

of any of the six possible goals. A visit ratio of 16.7% was consistent with chance 

performance, where the agent visited all six reward locations equally or visited one 

location regardless of cue. During the OPA maze condition, all agents showed 

improvements in visit ratios from PS1 to PS3 and above chance visit ratios in all probe 

sessions (unpaired t test 𝑝 < 0.001), except the actor-critic agent which showed chance 

performance for PS1 (𝑡 = −0.75, 𝑝 = 0.456) and above chance performance for PS2 

(𝑡 = 17.7, 𝑝 < 0.001) and PS3 (𝑡 = 36.3, 𝑝 < 0.001).  

After 20 sessions of learning the OPA maze configuration, the three agents were trained 

for one session on the OPA, 2NPA and 6NPA configuration followed by a probe 

session. The 2NPA condition comprised of two new FLAVOUR-LOCATION 

association pairs where cue 7 and 8 replaced cue 1 and 6 while keeping cues 2 to 5. 

The 6NPA condition comprised of six new association pairs with cues 11 to 16 

replacing all of cues 1 to 6.  nlike in Tse’s task, the environmental cues were not 

changed, hence place cells selective for a particular region in the arena did not remap 

to be selective for a different location. Both the symbolic and neural schema agents 

showed above chance visit ratios for the 2NPA (symbolic: 𝑡 = 27.2, 𝑝 < 0.001, 

neural: 𝑡 = 29.8.2, 𝑝 < 0.001) and 6NPA (symbolic: 𝑡 = 37.0, 𝑝 < 0.001, neural: 𝑡 =

52.0, 𝑝 < 0.001) condition, demonstrating one-shot learning of two and six new paired 

associations whereas the actor-critic trained by temporal difference error modulated 
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Hebbian rule showed chance performance (2NPA: 𝑡 = −3.7, 𝑝 < 0.001, 6NPA: 𝑡 =

−4.3, 𝑝 < 0.001), like the advantage actor-critic (A2C) agent trained by 

backpropagation (Kumar et al. 2021).  

To study the one-shot learning capacity of the neural agent, 12 new paired associates 

were introduced for a single trial after learning the OPA configuration over 20 sessions. 

For each agent simulation, the goal locations for the 12 PAs were randomly chosen out 

of the 43 remaining reward locations, after excluding the six reward locations that were 

used for the OPA condition. We arbitrarily defined a PA to have been learned if an 

agent achieved a visit ratio of more than 16.7% for the pair, well above the 8.3% 

expected if all 12 goals were visited randomly. The actor-critic learned 1.8 ± 0.08 PAs 

while the symbolic schema agent learned 10.5 ± 0.1 PA after just one trial of learning. 

Conversely, a neural agent with a small reservoir of 128 units learned 3.9 ± 0.07 PAs 

after one trial but the one-shot learning capacity increased monotonically to 8.0 ± 0.1 

PAs when the size of the reservoir was increased to 1024. However, the one-shot 

learning capacity decreased significantly when the size of the reservoir was further 

increased to 2048. Comparable performance was attained when the learning rate 𝜂𝑔𝑜𝑎𝑙 

was reduced from 0.000075 to 0.00001 (see supplementary Fig. 3.2 for example 

trajectories for 12NPA). 

Figure 3.5D shows example trajectories during the probe sessions PS1 till OPA, 2NPA 

and 6NPA. The actor-critic gradually learned to navigate to the correct goals in the 

OPA condition but failed to navigate to the two or six new PAs. Instead, schema agents 

navigated to all goals in the OPA, 2NPA and 6NPA conditions by direct heading with 

stochasticity in the trajectory due to the noise in the actor. If a particular PA was not 

learned properly, schema agents navigated to the centre of the arena (till a goal was 

found). Although all agents learned distinct policies for the six PAs during the OPA 

condition (example map shown for cue 1 in Fig. 3.5E), only the schema agents 

demonstrated distinct maps to navigate to the new PAs (example map for cue 7 and cue 
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11 goals shown in Fig. 3.5E). The actor-critic showed similar value and policy maps 

for all new PAs despite the cue presented, like in Kumar et al. (2022).  

3.3.5 One-shot navigation to multiple new paired associates 

We have shown that schema agents can perform one-shot learning of multiple new 

flavour-location paired associates while the actor-critic agent is unable to. We have 

also demonstrated that schema agents are unable to navigate past obstacles while actor-

critic agents and the hybrid actor-critic-schema agents can. Here we study the ability 

of these agents to navigate past obstacles and perform one-shot learning of multiple 

new paired associations. The flavour-location configuration for OPA, 2NPA and 6NPA 

are the same as in Figure 3.5. The arena now has an obstacle that is a 90-degree rotated 

H configuration. Training was extended to 50 sessions with nonrewarded probe 

sessions during session 2, 18 and 36. After 50 sessions, agents were introduced to the 

OPA, 2NPA and 6NPA conditions for a single session followed by a probe. The agent’s 

starting position was constrained based on the goal location (see Table 2 in Methods) 

so that the agent has to navigate around the obstacle instead of using direct heading to 

reach the goal. 

Figure 3.6A shows that the latency for all agents, except the symbolic agent, gradually 

decreased (actor-critic: 106 𝑠 ± 56  𝑆𝐷 , symbolic: 362 𝑠 ± 94  𝑆𝐷 , neural: 99 𝑠 ±

47  𝑆𝐷 , actor-critic-symbolic: 110 𝑠 ± 64  𝑆𝐷 , actor-critic-neural: 108 𝑠 ±

65  𝑆𝐷 ) and the visit ratios increased to above chance performance during the probe 

sessions PS1 to PS2 to PS3 (𝑝 < 0.001). This suggests that most agents gradually 

learned to navigate past the obstacle to reach the correct goal. 

Figure 3.6B shows the visit ratios during the probe session after 50 sessions of learning 

the OPA configuration and one session of learning the OPA, 2NPA and 6NPA 

configuration. Only the hybrid actor-critic-schema agents demonstrate visit ratios that 

are above chance performance for the 2NPA (hybrid symbolic: 𝑡 = 16.5, 𝑝 < 0.001, 
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hybrid neural: 𝑡 = 8.3, 𝑝 < 0.001) and 6NPA (hybrid symbolic: 𝑡 = 16.9, 𝑝 < 0.001, 

hybrid neural: 𝑡 = 3.7, 𝑝 < 0.001) configurations, demonstrating one-shot navigation 

to the two and six new paired associations. 

The actor-critic agent learned distinct maps for each cue, allowing it to navigate past 

obstacles (Fig. 3.6C–D and Supplementary Fig. 3.2). However, it failed to learn an 

appropriate policy to navigate to the new PAs after a single trial, like in Fig. 3.5E.  

The pure symbolic agent 𝛽𝑐𝑜𝑛𝑡𝑟𝑜𝑙 = 1 moved towards the goal using direct heading 

and got stuck at the obstacle to show chance visit ratios during the probe sessions, 

demonstrating its inability to navigate past obstacles like in Fig. 3.4C. Interestingly, the 

pure neural agent showed gradual learning performance like the actor-critic. This is 

because when the neural agent is far away from the goal location, its recall value falls 

below the threshold (Supplementary Figure 3.1B), causing it to suppress the 

NAVIGATE schema and instead adopting a random policy to navigate past obstacles. 

When the pure neural agent moved past the obstacle and closer to the goal, its recall 

value exceeded the threshold, and used the NAVIGATE schema to head directly to the 

goal. Although this strategy allowed the pure neural agent to navigate past obstacles 

and solve multiple goals, it failed to learn and navigate to new paired associates after a 

single trial.  

 

 



 - 103 -  

 

 

Figure 3.6. One-shot navigation to new paired associates by model-free and 

schema hybrid agents. A) All agents, except the pure symbolic agent, showed a 

decrease in average latency to reach six PAs (left) and showed improvement in the visit 

ratios to the correct goal during the probe sessions (right). B) Both the actor-critic-

symbolic and actor-critic-neural agents demonstrated one-shot learning of two (2NPA) 

and six new PAs (6NPA) (p < 0.001) while the actor-critic and pure schema agents 

showed chance performance of 16.7%. C) Example trajectories to two FLAVOUR-

LOCATION pairs by each agent (left to right: Actor-Critic, Symbolic, Neural, Actor-

Critic-Symbolic, Actor-Critic-Neural) during the OPA (cue 1 and cue 6), 2NPA (cue 7 

and cue 8) and 6NPA (cue 11 and cue 16) probe sessions. Although the Actor-Critic 

agent can navigate past obstacles, it cannot navigate to the new PAs after a single trial 

whereas the pure schema agents cannot navigate past obstacles since the NAVIGATE 

schema only allows for direct heading. Only the hybrid agents use a combination of 

direct heading and state-based actions to navigate past obstacles and learn new PAs 

after a single trial. D) Superimposed value (color) and policy (white arrows) maps of 

all agents during nonrewarded probe sessions (averaged over 24 simulations per agent). 

Only the hybrid agents show an optimal value and policy maps for new PAs. 196 

simulations per agent, shaded area indicates 25th and 75th quantiles while error bars 

indicate standard error. 
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Instead, the actor-critic-schema agents gradually learned a mixed policy to navigate 

away from the obstacles while using the NAVIGATE schema to directly head to the 

goals when possible (Fig. 3.6C–D). This strategy enabled the hybrid agents to achieve 

above chance visit ratios for 2NPA and 6NPA configurations in an arena with obstacles 

(Fig. 3.6B) to demonstrate one-shot navigation. 

3.3.6 Learning to gate working memory generalises to new paired 

associates 

In the previous sections, sensory cues were presented throughout the trial for all tasks. 

In this section, we used the same task as in Figure 3.5 but with the cue presented only 

at the start of the trial for 2 seconds, to simulate the same task conditions as the 

biological experiment (Tse et al. 2007). Only the hybrid actor-critic-neural schema 

agent with 𝛽𝑐𝑜𝑛𝑡𝑟𝑜𝑙 = 0.9 was studied for this section.  

Kumar et al. (2022) demonstrated that adding a bump attractor to the reservoir-actor-

critic agent endowed it with working memory to persistently maintain the transient 

sensory cue. This enabled the agent to gradually learn the multiple paired association 

task. Similarly, we added a bump attractor that took in sensory cues as inputs using 

loading weights such that each cue caused different subpopulations within the bump 

attractor to persistently maintain activity throughout the trial. The bump attractor 

activity was passed to the reservoir as an additional input (Fig. 3.7A).  

The LEARN FLAVOUR-LOCATION schema associated sensory cues to goal 

coordinates. We wanted to study if agents could learn to selectively attend to the task 

relevant cues and ignore distractors to form the correct flavour-location association. To 

do this, either cue 17 or 18 was randomly presented  three seconds after the presentation 

of task relevant cue, at a mean rate of 0.1 𝐻𝑧 for a duration of one second. The 

distractor caused a different subpopulation of the bump attractor to be excited. The 

distractor was presented either once or twice within a trial such that the bump attractor 
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maintained wrong cue representations that fluctuated throughout the trial (Fig. 3.7B). 

When the distractor is maintained in working memory, agent will associates the wrong 

sensory cue with the goal coordinates, hindering its ability to solve the MPA task. 

To attend to task relevant cues, we added a gating mechanism that controlled the 

information flow from the sensory cue to the bump attractor (Fig. 3.7A). The gate 

performed two actions, either update the working memory by allowing sensory 

information to flow to the bump attractor or maintain the working memory by 

restricting information being passed to the bump attractor ( loyd et al. 2 12;  ’ eilly 

and Frank 2006; Todd et al. 2009) 

An optimal gating policy is to update the working memory with the task relevant cue 

and maintain it throughout the trial to ignore distractors (Fig. 3.7C) so that the agent 

can form the correct FLAVOUR-LOCATION association. Dopamine, modelled here 

as the temporal difference error 𝛿𝐷𝐴 𝑡  computed by the critic (Eq. 14), has been shown 

to encode the presentation of task relevant information (P. Read Montague et al. 1996; 

Niv 2009; W. Schultz, Dayan, and Montague 1997) and can be used to learn an optimal 

gating policy by modulating the Hebbian plasticity rule with presynaptic reservoir 

activity and postsynaptic gating activity (Eq. 45).  

With the synaptic plasticity for the gating mechanism switched off and no distractors 

presented (Fig. 3.7D green), the neural schema agent with the bump attractor and 

random gating policy showed gradual decrease in latency to 51 𝑠 ± 43  𝑆𝐷  and 

above chance visit ratio performance during the probe sessions PS1 to PS3 and OPA 

(𝑝 < 0.001). The agent also achieved above chance visit ratios for the 2NPA (𝑡 =

4.5, 𝑝 < 0.001) and 6NPA (𝑡 = 13.5, 𝑝 < 0.001) conditions after one session of 

training (Fig. 3.7E).  
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Figure 3.7. Learning to gate working memory from distractors generalises to new 

paired associates. A) The task relevant sensory cue is given only at the start of the 

trial. Distractors are given as the agent navigates through the maze. A bump attractor 

and gating mechanism is added to the neural schema agent. Sensory cues synapse to 

the bump attractor neurons while the gating mechanism either updates or maintains 

working memory by opening or closing the inputs to the bump neurons. The synapses 

from the reservoir to the gate are learned using the temporal difference error modulated 

Hebbian rule, similar to the learning rule used by the Actor and Critic. B) When cue 4 

is presented, a subpopulation of bump attractor neurons selective for cue 4 become 

persistently activated till distractor cue 17 or 18 is presented. This causes the bump 

activity to shift to another subpopulation. C) In Tse et al., 2007, the FLAVOUR cue 

presented at the start of the trial signals the corresponding target LOCATION. 

Similarly, in this simulation, only the cue presented at the start of the trial is indicative 

of the goal location while subsequent cues serve as distractors. Reward prediction error 

signal encodes task relevant information and can be used to learn a gating policy to 

attend to task relevant cues and ignore distractors. D) When zero (green), one (light 

blue) or two (dark blue) distractors were presented, agents correspondingly took a 

longer amount of time to reach the correct goal (top) and spent a significantly lower 

amount of time at the target during probes PS2 and PS3 (bottom). When the plasticity 

for the gate was switched on, agents performed as well as when there were no 

distractors by navigating faster and spending a significantly higher amount of time at 

the goal compared to when plasticity was switched off (𝑝 < 0.001). E) Agents with 
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synaptic plasticity switched on demonstrated higher visit ratios for 2NPA and 6NPA 

compared to agents without plasticity to learn a gating policy, indicating improved one-

shot learning of two and six PAs. F) The temporal difference error (purple) signals the 

presentation of the cue at the start of the trial while the gating policy (green) learns to 

open when the task relevant cue is presented (before red dashed line) and remains 

closed throughout the probe trial to prevent distractors disrupting working memory. 

The gradually learned gating policy (PS1 to PS2) applied to new cues, even though 

there were only presented for a single trial, suggesting that the gate learned a 

generalisable policy to open only at the start of the trial and remain closed subsequently 

despite the cue presented. Row shows the change in temporal difference error and 

gating policy as learning progressed while columns show the activity when different 

cues were presented during probe sessions PS1-PS3, OPA, 2NPA and 6NPA. 144 

simulations per agent, shaded area indicates 25th and 75th quantiles while error bars 

indicate standard error. 

 

However, when one or two distractors (Fig. 3.7D one distractor – light blue, two 

distractors – dark blue) were presented to the agent, the latency decreased to 84 𝑠 ±

54  𝑆𝐷  for one distractor and 95 𝑠 ± 63  𝑆𝐷  for two distractors while visit ratio 

performance during PS1, PS2, PS3 and OPA decreased significantly compared to when 

no distractors were presented (𝑝 < 0.001). Visit ratios for 2NPA decreased to chance 

performance (one distractor: 𝑡 = 1.6, 𝑝 = 0.0571, two distractors: 𝑡 = 1.2, 𝑝 =

0.115) while visit ratios for 6NPA (one distractor: 𝑡 = −8.6, 𝑝 < 0.001, two 

distractors: 𝑡 = −23.8, 𝑝 < 0.001) significantly decreased compared to when no 

distractors were presented (Fig. 3.7E), demonstrating the ability for distractors to affect 

the agent’s one-shot learning performance. 

When synaptic plasticity to the gating mechanism was switched on, agents gradually 

learned to mitigate the effects of distractors. Agents showed a decrease in latency to 

45 ± 45  𝑆𝐷  for one distractor and 58 ± 49  𝑆𝐷  for two distractors while showing 

improvements in visit ratios during probe sessions PS1 to PS3 and OPA (𝑝 < 0.001) 

compared to when synaptic plasticity was switched off.  

More importantly, visit ratios for 2NPA were above chance performance (one 

distractor: 𝑡 = 5.1, 𝑝 < 0.001, two distractors: 𝑡 = 5.4, 𝑝 < 0.001) and visit ratios for 
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6NPA was significantly higher compared to when synaptic plasticity was switched off 

(one distractor: 𝑡 = 5.3, 𝑝 < 0.001, two distractors: 𝑡 = 7.0, 𝑝 < 0.001). This 

suggests that the gating policy generalised to new flavour-location PAs (cues 7, 8, 11-

16) that the agent had not seen before, demonstrating the gating mechanism’s ability to 

learn a generalizable rule to ignore distractors and associate task relevant cues for one-

shot learning of multiple new PAs.  

Figure 3.7F shows the temporal difference error (purple), averaged across agents, 

encoding the presentation of task relevant cues (across columns) which was presented 

only at the start of the probe trial (red dashed line is when task cue presentation ended 

and navigation started) and showing little to no selectivity to distractors for the rest of 

the trial across probe sessions PS1 to PS3 as well as OPA, 2NPA and 6NPA (down the 

rows), validating the theoretical scheme in Figure 3.7C. The probability of the gating 

mechanism updating the working memory (value of 𝜒 𝑡  in Eq. 44 being 1) was 

initially random (dark green) throughout the probe trial during PS1. As learning 

progressed, the gating policy updated working memory with a higher probability at the 

start of the trial when the task relevant cue was presented (before the red dashed line) 

and maintained a lower probability of update for the rest of the trial period. This 

suggests that the gating mechanism did learn the optimal gating policy in Figure 3.7C 

to only allow task relevant cues to be fed into the bump attractor and remain closed 

thereafter to maintain the working memory information by preventing disruptions by 

distractors.  

Agents showed significant (𝐹 = 74.6, 𝑝 < 0.001) and monotonic increase across all 

synaptic weight change when learning a greater number of novel paired associations 

compared to the single OPA session. Since we did not simulate a change in 

environmental cues, the amount of synaptic weight change in a new environment (New 

Maze condition in Tse et al. (2007)) was not assessed. Nevertheless, the model predicts 

that when learning new PAs using the LEARN METRIC REPRESENTATION and 
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LEARN FLAVOUR-LOCATION schemas, there is a greater amount of synaptic 

weight change, consistent with the memory schema consolidation theory (McClelland 

2013) and the increase in immediate early gene levels in the prelimbic region during 

NPA conditions compared to the OPA condition (Tse et al. 2011). 

3.4 Discussion 

We have shown that an almost fully neural reinforcement learning agent with three 

schemas and biologically plausible synaptic plasticity demonstrates one-shot learning 

of multiple new paired associations. The only caveat to the agent being fully neural is 

the symbolic specification to associate flavour-location pairs when a positive reward is 

disbursed, and to forget a previously stored paired associate if the trial ends with no 

reward. However, once the decision is made to associate or forget, the association or 

forget operations are neurally implemented.  

Model-free reinforcement learning agents such as the actor-critic can navigate past 

obstacles but do not show one-shot learning. Instead, a combination of actor-critic and 

schema agents perform one-shot navigation to multiple new pairs. Furthermore, we 

demonstrate a biologically plausible working memory gating mechanism that gradually 

learns to attend to task relevant cues and generalises to new pairs of FLAVOUR-

LOCATION associations. 

We verified that the actor-critic trained using biologically plausible learning rules 

(Kumar et al. 2022) learns to navigate past obstacles to multiple paired associates but 

could not learn new PAs after a single trial. Although Foster and colleagues developed 

an agent that could learn new PAs in one shot by learning a metric representation using 

biologically plausible synaptic rules, its LEARN GOAL COORDINATE and 

NAVIGATE schemas were symbolic and one-shot learning was demonstrated only for 

single goals (Foster et al. 2000). We refined the LEARN METRIC 

REPRESENTATION schema, and implemented the NAVIGATE schema neurally by 
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using backpropagation to train a neural network that approximates the computation 

performed by symbolic version of NAVIGATE. More importantly, we have shown that 

the LEARN FLAVOUR-LOCATION association schema can be neurally 

implemented as a reservoir with readout units trained by the reward-modulated 

Exploratory Hebbian rule to associate multiple sensory cues to goal coordinates after a 

single trial per paired associate, to replicate the one-shot learning rodent result of Tse 

et al. (2007). 

Behavioural evidence demonstrates animals perform vector-based navigation to goals 

from any arbitrary location (Etienne et al. 1998; Müller and Wehner 1988). To achieve 

this, we hypothesize the brain contains three schemas 1) the ability to self-localize by 

learning a metric representation of the environment 2) the ability to perform one-shot 

association to store and recall goal coordinates 3) the ability to navigate to the recalled 

goal location from an arbitrary location using the shortest path. Although the schemas 

we have proposed are inspired by theoretical accounts, there is experimental evidence 

suggesting that these schemas could exist in the brain. 

Place cells in the hippocampus (Moser et al. 2015; Sosa and Giocomo 2021) and grid 

cells in the entorhinal cortex (Behrens et al. 2018; McNaughton et al. 2006) have been 

shown to code an allocentric representation of an animal’s position to perform goal 

directed navigation. However, several proposals suggest that animals use these binned 

representations as an error correcting mechanism while additional neural circuitry is 

needed to transform the binned representation into a continuous metric representation 

of the environment to perform vector-based navigation (Bush et al. 2015; Fiete et al. 

2008; Widloski and Fiete 2014). Metric representations may be present in the cortex 

(Ito et al. 2015; Salinas and Abbott 2001) and other brain regions (Hulse et al. 2021; 

Yang et al. 2021). The LEARN METRIC REPRESENTATION schema learns a 

Cartesian metric representation, however, whether the brain learns a Cartesian, polar 

or other metric representation needs to be experimentally studied (Bush et al. 2015). 
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One-trial association of goal location is canonically attributed to the hippocampal CA3 

auto-associative system due to its highly recurrent architecture implementing attractor 

dynamics (Pfeiffer and Foster 2015; Rolls 2007, 2013). The Hopfield network has a 

similar architecture and uses the Hebbian rule (Hopfield 1982; Whittington et al. 2020) 

to form and recall associations after one trial. However, Hopfield networks suffer from 

at least two problems. The first problem is that Hopfield networks are not suitable 

architectures for continual learning because once a set of patterns are stored, additional 

patterns cannot be stored without disrupting previous associations (Fusi 2021; Parisi et 

al. 2019). Additional techniques such as pseudo-rehearsals are needed to store new 

patterns simultaneously with the old patterns (Frean and Robins 1999; Robins 2004). 

Although replay of previous episodes (Carr, Jadhav, and Frank 2011; Ji and Wilson 

2007; Karlsson and Frank 2009) could be a biological mechanism for pseudo-

rehearsals, this requires additional neural circuitry to separately store and recall 

episodic memory (Nicola and Clopath 2019; van de Ven, Siegelmann, and Tolias 

2020).  The second problem is that additional neural circuitry is needed to transform 

the Hopfield representations for vector-based navigation. For example, the flavour cue 

vector and place cell activity at the goal location needs to be transformed into a suitable 

vector representation to perform auto association. Subsequently, an inverse 

transformation is needed to retrieve the goal coordinates for vector navigation. Neural 

circuitry to perform these transformations can be obtained by training neural networks 

using backpropagation (Banino et al. 2018; Limbacher and Legenstein 2020; 

Whittington et al. 2020), though the computation performed by the network becomes 

difficult to interpret. Instead, our proposed reservoir-based LEARN FLAVOUR-

LOCATION association schema does not suffer from the continual learning problem 

nor does it require additional mechanisms to recall the flavour cue-associated goal 

coordinates.  
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While goal information is usually thought to be represented in the hippocampus (Hok 

et al. 2007; Ormond and Keefe 2022; Pfeiffer and Foster 2013; Sarel et al. 2017), the 

prefrontal cortex recalls goal information too (Hok et al. 2005; Tse et al. 2011). 

Accordingly, the LEARN FLAVOUR-LOCATION association schema may be jointly 

implemented in the hippocampus and prefrontal cortex. Other biologically plausible 

implementations of one-shot association that may comprise C 3’s autoassociative 

architecture may yet to be discovered.  

Vector-based navigation has been a dominant proposal for one-shot navigation (Banino 

et al. 2018; Howard et al. 2014; Ito et al. 2015; Lyu, Abbott, and Maimon 2022). 

Egocentric-based navigation proposals do not rely on vector computation (Ethier et al. 

2001; Fouquet et al. 2013; Rich and Shapiro 2009) but its suitability for one-shot 

navigation is unclear. Hence, the NAVIGATE schema performs vector subtraction 

between the animal’s current location and goal to compute the distance and direction 

vector for vector-based navigation.  

However, our NAVIGATE schema only affords direct heading. Combining the actor-

critic with the NAVIGATE schema was motivated by work that compared model-free 

and model-based reinforcement learning (Daw et al. 2011; Gläscher et al. 2010). 

Although this method surprisingly allowed agents to navigate past obstacles and 

demonstrate one-shot learning of new PAs, a more elegant NAVIGATE schema 

remains to be developed that allows agents to identify trajectories that navigate past 

obstacles and towards goals. For example by either using options (Botvinick 2012), 

subgoals (McGovern and Barto 2001), successor representations (Dayan 1993; 

Gardner et al. 2018; Stachenfeld, Botvinick, and Gershman 2017) or path planning 

algorithms (Stentz 1997). Perhaps the readout units of the reservoir can be trained to 

learn and recall sequential goal coordinates (Cazin et al. 2019) in a reinforcement 

learning paradigm (Miconi 2017; Murray 2019).   
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The handcrafted aspects of the network such as outputs that are goal coordinates, and 

synaptic plasticity gated by a scalar error that is computed using vector subtraction as 

an intermediate step, must arise via processes during development or prior experience 

that we do not model. Perhaps a similar solution could have been obtained by training 

a network via backpropagation (Banino et al. 2018; Cueva and Wei 2018; Whittington 

et al. 2020). However, the computation performed by the handcrafted structure is more 

interpretable.  

We also implemented a neural network-based solution to gate working memory so that 

the agent associated task relevant cues with goal coordinates instead of distractor cues. 

Although the initial proposal was that the basal ganglia gated working memory in the 

prefrontal cortex ( ’ eilly and Frank 2006), there is evidence to suggest that the 

thalamus also gates relevant information to learn tasks with uncertainty (Mukherjee et 

al. 2021; Rikhye, Gilra, and Halassa 2018). Exactly which brain regions exert top-down 

control over working memory has yet to be established. 

The plasticity rules used by LEARN METRIC REPRESENTATION and LEARN 

FLAVOUR–LOCATION schemas are biologically plausible in that they use local 

information such as the presynaptic activity, postsynaptic activity and global 

neuromodulatory factors. Learning a metric representation requires an error term to be 

computed for each axis and presynaptic activity in the form of an eligibility trace 

encapsulating place cell activity. This takes the form of a non-Hebbian two-factor 

learning rule in which plasticity depends on presynaptic activity and other factors, but 

not postsynaptic activity; this resembles learning rules in the cerebellum (Hausknecht 

et al. 2017; Medina and Mauk 1999; Piochon et al. 2013) and the amygdala (Humeau 

et al. 2003). Prior work suggests a three-factor Hebbian rule could succeed as well as 

the non-Hebbian two-factor rule (Frémaux et al. 2013). Plasticity at the goal synapses 

requires all three factors, and an additional reward modulation factor, expanding on the 
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commonly described formulation of the neuromodulated Hebbian rule (Frémaux and 

Gerstner 2016; Hoerzer et al. 2012) into a 4-factor Hebbian rule. 

To further advance the biological plausibility of our one-shot learning schema agents, 

future computational modelling may explore other agent architectures, using a spiking 

neuronal model, spike time dependent plasticity rules and effects of neuromodulators 

(Brzosko et al. 2017; Frémaux et al. 2013; Zannone et al. 2018).  

While we have proposed anatomical mappings of the schemas to brain regions, we have 

yet to explore how the circuitry could account for experimental results such as the 

similarity in neural representation between familiar and novel information (Baraduc et 

al. 2019), or encode other types of schemas (McKenzie et al. 2014; Zhou et al. 2020). 

We have also not modelled the memory consolidation (Alvarez and Squire 1994; 

Kumaran et al. 2016; McClelland 2013) result by Tse et al. (2007) in which the recall 

of flavour-location association pairs becomes hippocampus-independent.  
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CHAPTER 4 Conclusion 

 

Animals can solve a novel task after a single attempt by using their prior knowledge. 

This phenomenon is called one-shot learning. Artificial neural networks, on the other 

hand, require millions of training examples and parameters while using biologically 

implausible learning rules to demonstrate generalizable behaviour. Schemas are a 

tantalizing theory of how animals learn efficiently. However, how schemas are 

represented in the brain and how they facilitate one-shot learning has remained elusive.  

Hence, our research question was, what are the neural circuitry and biological learning 

rules required to learn new information after a single trial to solve novel problems?   

To answer this question, my thesis has been to develop a biologically plausible 

reinforcement learning agent that replicated the two-part rodent experiment by Tse et 

al. (2007). The first part was to replicate the gradual learning of multiple flavour cue 

and goal location paired associates (PA) and the second part was to replicate the 

learning of multiple new PAs after a single trial.  

4.1 Summary of contributions 

Chapter 1 reviewed the computational problem of one-shot learning, several symbolic 

and neural algorithms to solve new variants of a task after a single trial and 

experimental work characterizing the neural computations involved in one-shot 

learning. Schemas can facilitate rapid integration of new information to enable one-

shot learning. However, there were no demonstrations of neural network-based models 

that use local synaptic information and global neuromodulatory factors to implement 

schemas for one-shot learning.  

Chapter 2 demonstrated a biologically plausible reinforcement learning (RL) agent that 

gradually learned multiple flavour cue and goal location PAs as in the first part of Tse 

et al. (2007). Learning was performed solely by the actor and critic components, which 
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is similar to stimulus-response learning performed by the dorsolateral and ventral 

striatum in the basal ganglia (Barto 1995; Houk et al. 1994; Joel et al. 2002; Niv 2009).  

The synapses to the actor and critic were updated using the biologically plausible 

temporal difference error modulated Hebbian rule which used only the presynaptic 

activity, postsynaptic activity, and the reward prediction error as a global 

neuromodulatory factor. Although classical RL agents (Foster et al. 2000; Frémaux et 

al. 2013), with synapses from the place cells and sensory cue to the actor and critic, 

gradually learned single goals, they could not learn distinct policies to solve multiple 

PAs. Instead, if place cells and sensory cues were pre-processed by a nonlinear hidden 

layer or reservoir of recurrently connected units, and synaptic plasticity was between 

the hidden layer and actor-critic, these agents learned distinct value and policy maps to 

solve up to 16 PAs (Kumar et al. 2022).  

Based on our computational model, place cell and sensory cue information need to be 

first pre-processed by a downstream cortical layer before passing the information to the 

striatum, suggesting a hippocampal-cortico-striatal pathway (De Bruin et al. 1997; 

Kolb et al. 1994; Negrón-Oyarzo et al. 2018; Whitlock et al. 2008) to learn multiple 

PAs.   

Chapter 3 demonstrated that although the biologically plausible reservoir-actor-critic 

gradually learned multiple PAs, it failed to subsequently demonstrate one-shot learning 

of new PAs. Similarly, an actor-critic trained using backpropagation could not learn 

new PAs after a single trial (Kumar et al. 2021). Instead, we proposed the need for three 

schemas to replicate the second part of Tse et al. (2007).  

The first schema was to learn a continuous metric representation of the environment 

(LEARN METRIC REPRESENTATION). The schema used place cell activity as 

inputs and synapses to X and Y coordinate cells were updated using a path integration 

derived temporal difference error modulated Hebbian plasticity rule (Foster et al. 
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2000). The error was computed by integrating the agent’s self-motion cues with path 

integration estimations. This additional neural circuitry has been suggested to be 

necessary for animals to self-localize and perform vector navigation, which affords a 

more efficient goal directed strategy (Bush et al. 2015; Fiete et al. 2008). 

The second schema was to learn multiple flavour cue and goal coordinate associations 

after a single trial (LEARN FLAVOUR-LOCATION). Autoassociative attractor 

networks require additional complex circuitry to transform goal information into goal 

directed behaviour (Banino et al. 2018; Limbacher and Legenstein 2020; Whittington 

et al. 2020) and they do not perform well in tasks that require continual learning unless 

additional mechanisms are incorporated (Frean and Robins 1999; Robins 2004). Hence, 

we implemented the one-shot association system using a reservoir that took in flavour 

cues as inputs and readout units representing goal coordinates as output, with only the 

readout synapses trained using a reward-modulated Exploratory Hebbian rule (Hoerzer 

et al. 2012). This biologically plausible system solved the two problems suffered by 

the autoassociative network. At the same time, specific associations could be stored or 

deleted like the symbolic key-value matrix used in a neural Turing machine (Graves et 

al. 2014; Santoro et al. 2016). Although we did not propose an anatomical mapping of 

this association schema, the micro-cortical inspired reservoir architecture may be 

implemented by the prefrontal cortex and hippocampus given that the prefrontal cortex 

is needed to encode and recall flavour associated goal coordinates collaboratively with 

the hippocampus (Gilboa and Marlatte 2017; Ito et al. 2015; Tse et al. 2011).   

The third schema performed direct heading to a defined goal from arbitrary locations. 

This was by first performing vector subtraction between an agent’s current and goal 

coordinates and subsequently choosing the direction towards the goal (NAVIGATE). 

Since we only used these two computations to train a network by backpropagation and 

subsequently fixed the weights during learning, the one-shot learning demonstrated by 
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this schema agent is biologically plausible. We assumed that development or learning 

of vector subtraction occurred during development. 

We demonstrated that an agent with these three schemas – LEARN METRIC 

REPRESENTATION, LEARN FLAVOUR-LOCATION, NAVIGATE – gradually 

learned six PAs and subsequently learned up to eight new PAs after one trial, 

replicating the one-shot learning behaviour seen in the second part of Tse et al. (2007).  

Furthermore, an agent that combined an actor-critic with the schemas navigated past 

obstacles and demonstrated one-shot learning of new PAs. Lastly, the schema agent 

used the reward prediction error to gradually learn a working memory gating policy to 

ignore distractors and generalised to associate new flavour cues to goal coordinates. 

Most of the synaptic weights in the neural schema agent were trained using a modulated 

Hebbian rule, which obeys similar weight update principles as the experimentally 

demonstrated the spike time-dependent plasticity (STDP) rule (Markram et al. 1997). 

Furthermore, the rate-coded neuron model and temporal difference errors obey 

biologically plausible time constants. Hence, the actor-critic-neural schema agent is 

biologically plausible.  

4.2 Limitations and future directions 

Despite the ability to demonstrate one-shot learning of paired associations, the 

biological plausible schema agent has several limitations.  

Biological plausibility. As our model uses leaky rate-coded neurons and Hebbian 

plasticity, a refinement would be to extend the schema agent with spiking neurons and 

modify synapses using spike time dependent plasticity rules (Frémaux et al. 2013). 

Other modifications are to impose biological constraints on neuromodulators 

representing reward prediction errors and path integration errors.  

Can there be an agent that does not need to rely on all three schemas to perform one-

shot learning? The successor representation is a hybrid reinforcement learning 
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algorithm that combines the computational efficiency of model-free algorithm and the 

planning flexibility offered by model-based algorithms to navigate past obstacles 

(Akam and Walton 2021; Dayan 1993; Gardner et al. 2018). Can agents that employ 

successor representations learn multiple new PAs after a single trial while navigating 

past obstacles? If not, what other schemas might be needed? 

Generalizability to other cognitive tasks. The robustness of a proposed model 

depends on its ability to generalize to a variety of tasks. Although our fully neural 

schema agent can demonstrate one-shot learning, its capability has only been 

demonstrated on a particular spatial navigation task. The model should be further tested 

on its ability to learn sequences (Cazin et al. 2019; Han, Doya, and Tani 2019; Zhou et 

al. 2020), hierarchical associations (McKenzie et al. 2014; Ribas-Fernandes et al. 2011) 

or other forms of cognitive control tasks such as task switching (Hoerzer et al. 2012; 

Mante et al. 2013; Miconi 2017) and reversal learning (Harlow 1949; Wang et al. 2018; 

Zhang et al. 2018). Furthermore, our proposed schema agent could probably be 

straightforwardly extended to solve one-shot navigation in a three dimensional 

environment, for example, to control a robotic arm.  

Anatomical mapping. In schema dependent tasks, the hippocampus was required to 

learn paired associates, both gradually and after a single trial (Tse et al. 2007) while 

the prefrontal cortex was needed to encode and recall PAs after consolidation has 

occurred (Tse et al. 2011). How do the computations differ between these two regions 

for one-shot learning? It has been proposed that the prefrontal cortex learns the abstract 

task schema to guide information encoding in the hippocampus (Bernardi et al. 2020; 

Miller and Cohen 2001). This translates to consistent hippocampal CA1 and CA3 

neural firing activity for familiar and novel tasks that share the same task schema 

(Baraduc et al. 2019; McKenzie et al. 2013, 2014). Our current model describes the 

computations and learning processes required for one-shot learning of PAs but does 

not propose a distinct anatomical mapping to the hippocampus, prefrontal cortex 
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(Gilboa and Marlatte 2017), and other brain regions such as the entorhinal cortex 

(Whittington et al. 2020). This might make it harder to test hypotheses on the 

computations performed by distinct brain regions, but there is also insufficient 

experimental evidence about the computations performed by specific brain regions. For 

example, visual integration happens in the hindbrain systems (Grill and Hayes 2012; 

Yang et al. 2021) and path integration in the entorhinal cortex (Fuhs and Touretzky 

2006; Hafting et al. 2005). Hence, neural integration computations or those required 

for goal directed vector-based navigation can be found in other brain regions. More 

work, likely including additional experimental data, is needed to understand the 

potential links between various theoretical proposals, such as those presented in this 

chapter, and where they might be implemented in the brain.  

Memory consolidation. Tse et al. (2007) demonstrated that the memories of the 

FLAVOUR-LOCATION PAs were plausibly transferred from the hippocampus to the 

prefrontal cortex after 24 hours through a memory consolidation process. The 

complementary learning systems theory postulates that individual episodic memories 

are gradually consolidated and transferred to the cortex in the form of an abstract task 

schema (Kumaran et al. 2016; McClelland 2013). A recent computational model 

proposed a hippocampus to prefrontal cortex consolidation mechanism while 

replicating the one-shot learning (Hwu and Krichmar 2020) as in Tse et al. (2007), 

although they did not replicate the experimental conditions and employed supervised 

learning algorithms. Nevertheless, our current reinforcement learning agent should be 

expanded to include a more biologically plausible memory consolidation process 

(Alvarez and Squire 1994; Tomé, Sadeh, and Clopath 2022) to test hypotheses such as 

the complementary learning system theory in acquiring schemas. 

This thesis has presented an example of how the use of theoretical schemas for one-

shot learning can be implemented using biologically plausible neural networks and 

learning rules. These biologically plausible schemas replicate both the gradual and one-
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shot learning behaviour exhibited by rodents in the multiple paired associations task by 

Tse et al. (2007). The next steps are to further the biological plausibility and explain 

the neural representations seen in the schema literature. I believe more effort to develop 

biologically plausible models will enable us to predict the learning processes in 

biological neural circuits to improve education outcomes, alleviate learning disabilities, 

and may improve artificial intelligence learning algorithms.  
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APPENDICES 

 

 

Supplementary Figure 2.1. Policy, value and TD error maps when relearning new 

rewards. (A) Value (colour) and policy (white arrows) maps (top) and TD error maps 

(bottom) in PT1, PT2 & PT3 during learning of the original reward location, (B) the 

displaced reward location at 0.28 m from the original reward location, (C) the displaced 

reward location at 0.85 m from the original reward location, and (D) the displaced 

reward location at 1.7 m from the original reward location. 

 

Supplementary Figure 2.2. Value and policy maps for the reservoir agent. Each 

row shows value and policy maps and example full trajectories for each of the 6 cues 

in a probe session; top, middle and bottom rows respectively show PS1, PS2 and PS3.  
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Supplementary Figure 3.1. Learning LEARN METRIC REPRESENTATION 

and FLAVOUR-LOCATION association. A) Path integration temporal difference 

error decreases over 20 trials as an agent performs random foraging in an open arena 

for 300 seconds. The rate of learning depends on the eligibility trace time constant. B) 

During navigation, the reservoir receives both sensory cue and place cells as input. 

 hen an agent receives a reward, plasticity is switched on and the agent’s movement 

is restricted to associate the agent’s current coordinates with the reservoir activity. 

During this period, place cell activity remains constant as the agent is static in the maze. 

When plasticity is switched on (red to black dashed lines), the recall value reaches 1 

when either least mean square or exploratory Hebbian rule are used. However, in the 

following trial when the agent is moving around the arena, causing the place cell 

activity to change, the recall value for the synapses trained using the LMS rule averages 

around 0.95 despite the place cell activity whereas the recall value for the synapses 

trained by the EH rule averages around 0.61 when the place cell activity is different 

compared to during the association period but increases to 1.08 when the place cell 

activity is similar to the association period. Hence, the reservoir trained using the EH 

rule activates the NAVIGATE schema when the agent gets closer to the goal while the 

reservoir trained using the LMS rule performs direct heading to demonstrate similar 

performance as the symbolic agent.    
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Supplementary Figure 3.2. Value and policy maps for PS1, PS2, PS3, OPA, 2NPA 

and 6NPA in an open maze arena for A) actor-critic, B) symbolic and C) neural agents. 

D) Example trajectories by actor-critic, symbolic and neural agents solving the 12NPA 

task  

 

 

  

  


