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Experiment I: Generalization of Compositional Learning Experiment lll: Comparison of Text Encoders

Motivation: Children can rapidly generalize compositionally-constructed rules to unseen
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Figure 3. Left: Agent architecture. The language module of the one-hot encoder agent is at bottom right, boxedup ., | g i g Y i YN N —
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Table 1. Train-Test split for environment C|S and C&S. Table 2. Reward System. Conclusions

1. We demonstrated the compositional abilities of reinforcement learning agents with

multimodality. Specifically, we found that agents can learn to decompose and recompose
instructions to solve held-out test instructions.

| Episodes (K) for performance criterion 2. We showed that invariant concept learning accelerates compositional learning.
T T TERHRIE T Training Train Held-out Test 3. We tested various text encoders, with CLIP as a foundation model on both image and text

. " . " = modality showing the ability to speed up learning.
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Figure 2. Examples of instruction and various scenarios in three environments. Table 4. Summary of zero-shot evaluation experiments.



