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Anticipating future outcomes is a fundamental task of the brain'>. This process
requires learning the states of the world as well as the transitional relationships
between those states. In rodents, the hippocampal spatial cognitive map is thought
tobe one suchinternal model*. However, evidence for predictive coding> and reward
sensitivity” ' in the hippocampal neuronal representation suggests that its role
extends beyond purely spatial representation. How this reward representation
evolves over extended experience remains unclear. Here we track the evolution of the
hippocampal reward representation over weeks as mice learn to solve a cognitively
demanding reward-based task. We find several lines of evidence, both at the population
and the single-cell level, indicating that the hippocampal representation becomes
predictive of reward as the mouse learns the task over several weeks. Both the
population-level encoding of reward and the proportion of reward-tuned neurons
decrease with experience. At the same time, the representation of features that
precede the reward increases with experience. By tracking reward-tuned neurons

over time, we find that their activity gradually shifts from encoding the reward itself to
representing preceding task features, indicating that experience drives a backward-
shifted reorganization of neural activity to anticipate reward. We show that atemporal
difference model of place fields" recapitulates these results. Our findings underscore

the dynamic nature of hippocampal representations, and highlight their rolein
learning through the prediction of future outcomes.

The hippocampus represents amixture of spatial (such as place'?, land-
mark® and so on) and non-spatial (such as time', sound frequency®
and so on) environmental features. The collective encoding of envi-
ronmental features and their relationships, known as a cognitive map*,
is thought to support spatial navigation and memory-related behav-
iours. From an evolutionary standpoint, an animal’s survival depends
on using these cognitive abilities to efficiently learn and remember
rewarding experiences, such as navigating to home, safety and food.
This computation is supported by an experience-dependent spatial
cognitive map in the hippocampus”®. Therefore, the hippocampal
representation of the environment is expected to undergo consider-
able changes once an animal has learned how to navigate to reward-
ing locations or has mapped environmental features associated with
rewards”.

Previous studies have shown that the hippocampus encodes reward-
related events at multiple time points, including reward approach,
onset, location and history’. During reward approach, running toward
aknowngoalinduces place-specific firing patterns along the path that
differ from firing during random foraging in the same environment®.
Place fields also cluster near reward sites, generating a reward over-
representation®’®, At reward arrival, a distinct group of hippocampal

neurons consistently encodes reward delivery, independent of loca-
tion or context, indicating that reward signals can be separated from
place coding™. The hippocampus also encodes reward history: after
probabilistic reward delivery and after leaving the reward site, neuronal
firing changes depending on the reward outcome”. Although these
studies describe how hippocampal representations change before
and after learning reward locations, how these dynamics emerge and
evolve with experience over days, weeks or months remains unknown.
The hippocampus has been shown to support predictive models in
various species®*°. We propose that a reorganization of hippocampal
representations—in particular, reward representation—during learn-
ingofareward-based task will occur to support reward prediction. We
examine this hypothesis by tracking the evolution of the hippocampal
representation across weeks as mice perform a reward-based task.

Calciumimaging of CA1 neurons

We used aone-photon miniaturized head-mounted fluorescent micro-
scope? to perform calcium imaging of CA1 of dorsal hippocampus in
seven mice (Fig. 1a). Mice were injected with a viral construct to express
GCaMPé6fin dorsal CAland were implanted with agradient refractive
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Fig.1|Imaging of CAl1 neuronal activity inmice while they perform areward-
based task. a, Schematic of the surgical strategy. Right, magnification of the
boxedregion.Scalebars,1 mm (left); 200 um (right). b, Example CA1field of view
(FOV)withidentified cells. Scale bar,200 pm. ¢, Extracted calciumtraces of nine
representative cells (top rows) and their corresponding deconvolved traces
(bottomrows).d, Number of identified cells across mice (number of sessions per
mouse fromlefttoright:33,53,17,18,24,23,13). Box plots show median (centre

index (GRIN) lens targeting CAl(see ‘Surgeries’in Methods). Calcium
recording data were preprocessed to correct for motion artefacts?,
segment cells, extract calcium transients® and deconvolve the traces
(Fig.1b,c and Extended DataFig.1). We recorded 504 + 101 (mean * s.d.)
neuronsacross sessions and mice (Fig.1d). We used a20 x 18-cm auto-
mated touchscreen recording box?*** to monitor mouse behaviour.
The box consists of a touchscreen in front, a reward port in the back
andaninfrared cameraontop torecord behaviour (Fig. 1e). Mice were
trained on a delayed non-matching-to-location task, where a sample
appeared randomly ontheleft or right screen after trial initiation. After
anose poketothesample, the delay starts. At the end of the delay, atone
and light cue signalled the mouse to move to the back of the cage and
break abeam toinitiate the choice phase. During the choice phase, two
white squares are displayed and mice must choose the non-matching
squaretoreceive the reward (Fig. 1e,f). Mice performed one session per
day. Whenthe mouse reached a high level of performance, we increased
the delay between the sample and the choice phase to make the task
more challenging. This served two purposes: (1) to separate the effects
of experience (session number) from learning (performance) on hip-
pocampal activity; and (2) to keep mice continuously learning, engag-
ingrelevant neuronal circuits throughout recordings. Mice exhibited
increased performance, for each delay duration, over time (Fig. 1g and
Extended DataFig.1). The following sections focus on the encoding of
reward. An extended analysis of spatial tuningand decoding reveals that
hippocampal neurons areinvolved in representing multiple aspects of
the task (Extended Data Figs. 2-4).

Reward encoding decreases with experience

We investigated the dynamics of reward representation in the hip-
pocampus as mice learn to solve the delayed non-match-to-location
task. The learning period varied, taking a few weeks depending on
each mouse’s learning rate (Extended Data Fig. 1). To quantify the
reward-encoding signal across sessions, we measured reward informa-
tion at the population level using aninformation-theoretic analysisin
the CEBRA-derived latent space (see ‘CEBRA embedding’in Methods).
This framework enabled us to track reward representation changes with
experience. Atthe single-celllevel, we used ashuffle-control approach
toidentify reward cells per session and tracked their percentage across
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line), 25th-75th percentiles (box) and range within1.5 x interquartile range
(IQR; whiskers); points beyond whiskers are outliers. The dashed line and the
shadingrepresentthe mean +s.d. (504 +101) of the number of cells. e, Schematic
ofthetouchscreen chamber. f, Schematic of the task. g, Mouse performance for
thefirstand last day for each delay (n =7 mice). Bar graph and error bars show
mean +s.e.m.Dashed line shows the chance level. The schematicinawas created
using CoreIDRAW; illustrationsine,fwere created using Affinity Designer.

days. Both analyses indicate that reward representation declines mainly
with experience, not performance.

Our datasuggest that adedicated subpopulation of cellsis responsive
toreward (Fig.2a). Notably, distinct subpopulations encode the reward
depending onwhether the mouse approached the reward from the left
or right choice on the touchscreen. The sorted calcium traces show
that reward neurons are not necessarily tuned to the reward onset'®
but form a reliable sequence spanning the entire duration of reward
consumption (Fig.2a and Extended Data Fig. 4).

Using CEBRA?®, we projected our deconvolved calcium tracesintoa
32-dimensional latent space. To quantify the information content of the
reward representation, we used afivefold cross-validationapproach to
decode the reward moments from latent space. The cross-fold-averaged
mutual information (MI) between the decoded reward traces and the
actual reward traces was regarded as the reward information content
foreachsession (Fig.2b and Extended DataFig. 5). Correlating reward
information content (we call it reward MI) with session number (day)
and mouse performance indicates a negative correlation with session
number and aweak correlation with mouse performance (Fig.2b). The
result is consistent across mice (Fig. 2c). A linear model (see ‘Linear
modelling of information content’ in Methods) showed that variance
inreward Ml is explained mainly by experience, not by performance
(Fig.2c).

Atthesingle-celllevel, we used ashuffle-control procedure toiden-
tify reward cells (see ‘Identification of cell types’ in Methods) (Fig. 2d).
This resulted in 8.5 +1.5% of the cells being identified as reward cells
(Fig. 2e). Reward-cell tuning curves show two features: (1) responses
depend onthe mouse’s approach directionto the reward port; and (2)
cellsare tuned to distinct moments of reward consumption, extending
beyondreward onset (Fig.2d and Extended Data Fig. 4). Furthermore,
reward cells exhibit greater firing during task engagement than dur-
inginter-trial intervals (ITls) (Extended Data Fig. 4). Notably, consist-
ent with the population-level analysis, the percentage of reward cells
declined with session number but showed only aweak correlation with
performance (Fig. 2f), a pattern consistent across mice (Fig. 2g). Alinear
modelindicates thatasignificantamount of the variance in the dynam-
ics of reward-cell recruitment is attributed to session number rather
thanto mouse performance (Fig. 3g). Both population and single-cell
level analysis reveal that the reward representation decreases with
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Fig.2|Dynamics ofreward encoding during learning. a, Top, raw calcium
traces from350 neuronsinonesession. Blue and orange bands mark reward
consumption time after right (blue) and left (orange) approaches. First 45
reward-responsive cells are sorted by peak activity; insets show reward-cell
responses for right (blue, cells 1-20) and left (orange, cells 21-45) approaches.
Middle, averaged activity of left- and right-preferring reward cells. Bottom,
mouse speed. b, Reward mutualinformation (MI) declines with session number
(r=-0.83,two-sided t-test P=0.0001) but shows weak correlation with
performance (r=-0.13, two-sided t-test P= 0.57). ¢, The effect is consistent
acrossmice (n=7) (two-sided Wilcoxon signed-rank, P=0.0469); linear
modelling confirms that session number is the dominant factor explaining
reward Mldynamics. d, Tuning of two reward cells. First row, place fields.
Second row, vectorized place fields. Third row, trial-by-trial calcium activity
aligned to reward onset. First and second white lines indicate the start and
offset of reward consumption, respectively. Trials are sorted by reward

experience. Torule out potential preprocessing effects, we identified
reward cells using both deconvolved traces and the area under the
curve (AUC) of raw calcium signals, finding similar dynamicsin reward
Ml and cell recruitment (Extended Data Fig. 6). Additional analyses
confirmed that the decline in reward representation was not due to
task difficulty (delay length) or behaviour variability (running speed
before reward) (Extended Data Fig. 7). The gradual reorganization of
reward representation prompted us to examine hippocampal dynamics
for other task features, such as the pre-reward epoch.

Pre-reward encodingincreases with learning

In this section, we apply the same methodology used to measure hip-
pocampal reward representation to quantify the evolution of hip-
pocampal encoding of pre-reward moments. Specifically, we analysed
two pre-reward events: (1) screen, the [-150, 150]-ms window around

consumption duration. Fourth row, average calcium traces across trials
(mean +s.e.m.). e, Percentage of identified reward cells across mice.

The numbers for each mouse show the cross-session average number of reward
cells. The dashed line and the shading represent the mean number of reward
cells+s.e.m.(8.5+1.5%) across mice. Box plots show median (centreline),
25th-75th percentiles (box) and range within 1.5 x IQR (whiskers); points beyond
whiskersare outliers. f, Percentage of reward cells decreases with session number
(r=-0.52,two-sided t-test P=0.0096) but not with performance (r=-0.15,
two-sided t-test P= 0.48).g, The effectis consistent across mice (n =7) (two-sided
Wilcoxonsigned-rank, P=0.0312). Linear modelling confirms that session
number is the main factor explaining variance in reward-cell recruitment.
Bargraphsanderrorbarsinc,gshowmean +s.e.m.Inb,f, the solid line shows the
linear regression fit (least-squares) and the shaded error band represents the 95%
confidenceinterval.

the choice touch; and (2) reward approach, the interval between a
choice and areward as the mouse runs to the port. Using the same
methods as for reward, we assessed both population- and single-cell-
level encoding of these events to track how their representations evolve
with time.

Distinct neuronsubpopulations encoded left versus right choices at
thetouchscreen (Fig.3a). We applied the same analysis used for reward
tomeasure population-level screeninformation content. Incontrast to
that observed for reward, screen information increased with both ses-
sionnumber and mouse performance (Fig.3b). Alinear modelindicates
that both factors contribute significantly to explaining the variance
in the dynamics of the screen information content (Fig. 3b). A similar
analysis for reward-approach encoding indicates a similar positive
correlation for the reward-approach information content (Fig. 3c,d).

Atthesingle-celllevel, screen and reward-approach cells were identi-
fied using ashuffle-control procedure (see ‘Identification of cell types’
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Fig.3|Dynamics of pre-reward encoding acrosslearning. a, Top, raw
calciumtraces. Blue and orange lines indicate poke moments to the right
(blue) and left (orange) screens. Middle, average calcium activity for left-and
right-screen-responsive cells. Bottom, mouse speed. b, Screen Ml positively
correlates withboth experience and performance (n = 7 mice). Two-sided
Wilcoxonsigned-rank test P=0.4688 (NS, not significant). Alinear model
shows thatboth session number and performance have key roles in explaining
the dynamicsof screen Ml. ¢,d, Analysisasin a,b, but for reward-approach
moments. Reward-approach Ml positively correlates with both experience and
performance (n =7 mice). Two-sided Wilcoxon signed-rank test P=0.2188 (NS).
e, Tuning curves of two screen cells. Top row, place fields. Middle row, trial-by-trial

in Methods). We identified 7.5 + 0.7% of the cells as screen cells and
5.7 £0.7% asreward-approach cells (Extended Data Fig. 5). The percent-
age ofidentified cells for both screen and reward-approach cellsshows a
positive correlation with both session number and mouse performance
(Fig.5b,e). Alinear model reveals that both session number and perfor-
mance contribute significantly to the dynamics of recruitment of screen
and reward-approach cells (Fig. 5c,f). Finally, we compared calcium
response amplitudes of reward-approach cells during approaches to
the main reward versus the smaller incentive given during the delay,
and found that reward magnitude modulated their activity significantly
(Extended Data Fig. 8).

Together, these results show distinct dynamics: with experience,
measures of reward encoding decline at both population and single-
celllevels, whereas measures of screen and reward-approach encoding
increase.

4 | Nature | www.nature.com

calciumactivity for left (top) and right (bottom) screen choice. White line
indicates screen poke time. Bottom row, average calcium traces (mean + s.e.m.)
for left (blue) and right (grey) screen pokes. f, The percentage of screen cells
increases with both session number and performance (n =7 mice). Two-sided
Wilcoxonsigned-rank test P=1(NS). Alinear model shows that both session
number and performance significantly explain changesinscreen cell
recruitment. g,h, Analysis asine,f, but for reward-approach cells. In the middle
rowing, theleft white line shows the screen poke, and the right white line
indicates the reward onset. Like screen cells, reward-approach cellsincrease
withsession number and performance. Inh, two-sided Wilcoxon signed-rank
test P=0.2188 (NS).Bargraphsanderrorbarsinb,d,f,hshowmean +s.e.m.

Backward shift of reward coding during learning

Across all mice, we were able to track 1,814 neurons (see ‘Tracking
cells’in Methods and Extended Data Fig. 9). Out of 1,814 cells, 225
were reward cells (12.4%), 225 were screen cells (12.4%) and 53 were
reward-approach cells (2.9%). The remaining 1,311 cells (72.3%) are
labelled as non-classified cells. Next, we examine the functional proper-
ties and evolution of these cells across sessions.

Our data reveal that a significant number of reward cells exhibit a
backward shift across sessions from reward to the reward approach
and screen, termed as backward-shifting reward cells (Fig. 4a-c and
Extended Data Figs. 10,12 and 13). Specifically, we report a signifi-
cant negative correlation between the response timing and the ses-
sion number for reward cells and reward-approach cells (Fig. 4d).
Using a shuffle-control method, we found that 21% (47 out of 225) of
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Fig.4|Weeks-long backward shift of reward encoding duringlearning.

a, Tenrepresentative backward-shifting reward cells. Rows show average
calciumactivity atreward from first (top) to last (bottom) session. Numbers
indicate the correlation between peak timing and session number. Overlapping
contours of cellbodies across sessions are shown on the left. b, Peak activity
timing relative toreward onset across sessions for all backward-shifting reward
cells, sorted by mean peak timing. ¢, Each point represents the timing of peak
activity for asingle backward-shifting reward cellin agiven session. Scatter

tracked reward cells showed backward shifting—well above the 5%
chance level (Fig. 4e). A substantial portion (60%; 28 out of 47 cells)
of backward-shifting reward cells shifted enough to be classified as
screen or reward-approach cells in later sessions (Fig. 4b). Detection
of forward-shifting reward cells was at chance levels (Fig. 4e). Unlike
reward cells, we found that screen and reward-approach cells exhibited
amixture of backward and forward shifting (Fig. 4e).

We also examined whether neuron response amplitudes changed
across sessions. Using a similar approach to that used for temporal
shifts, we correlated each neuron’s peak amplitude with session number
instead of peak timing. Many neurons across all cell types show declin-
ingactivity over sessions, suggesting that, alongside backward shifts,
reduced firing of some reward cells contributes to the population-level
decrease in reward representation (Extended Data Figs. 11,12 and 14).

ATD error model recapitulates the backward shift

The marked similarity of the backward-shifting reward cells to the
reward prediction error (RPE) response observed in midbrain dopa-
mine neurons motivated us to see whether atemporal difference (TD)
learning model of the hippocampal representation could explain our
observations. We focused on the segment from choice at the screen
toreward, modelling it as a one-dimensional (1D) navigation task: the
agent moves fromstate 1(choice at screen) through to state 7 (reward
port nose poke) and receives a reward at terminal state 8 (Fig. 5a,b).
In our model, at initiation, 1,000 place cells uniformly tile the 1D
state space with each cell’s state selectivity described by a Gaussian
radial basis function. The place-cell population activity is passed to
acritic (v) for value estimation and TD (6) computation. The objec-
tive is to minimize the TD error by updating both the value func-
tion and place-cell peaks (see ‘Simulations for TD-error-modulated
place-cell model’ in Methods). This causes backward shifting of TD
error from the reward to the start state (Fig. 5b,c), driving backward
updatesin state-value estimates and correspondingly backward shifts

plotshows 47 backward-shifting reward cells (each tracked across an average
of10 sessions; total n = 473 data points). Black line indicates the within-session
average of peak times, and error barsare s.e.m.d, Correlation between peak
activity timing and session number acrossall tracked cells for each cell type
(n=228reward cells, 53 reward-approachcells, 225 screen cellsand 1,308
non-classified cells). Bar graphs and error bars show mean + s.e.m. e, Proportion
of cellsidentified as forward-shifting (FW) and backward-shifting (BW) for each
celltype.Dashed lineindicates chancelevel.

in place-cell peaks (Fig. 5d-i) (see model details in Supplementary
Information and ‘Simulations for TD-error-modulated place-cell
model’ in Methods). Three main reorganization patterns appear:
(1) reward-proximal cells shift monotonically backward; (2) reward-
approach cells first move towards the reward, then shift backwards;
and (3) screen-proximal cells shift forwards latein learning (Fig. 5f).In
addition, we extended the model to a policy-learning agent, in which
place cells evolve to maximize rewards, mirroring animal behaviour.
Despite the added complexity (Extended Data Fig.15), spatial selectiv-
ity still shifts as in Fig. 5. In the early learning phase, the model repli-
cates the over-representation of the reward state by place cells®?, as
observed in previous experiments (Fig. 5j), and in the later phase, a
gradual decreaseis observed, consistent with our experimental results
(Fig. 2).

Our modelling underscores the crucial role of reward predictability.
Specifically, the backward shift is seen only when the reward discount
factor (y), which determines the influence of future state valuesin the TD
error calculation, isgreater than 0.1 (Fig. 5k). Whenyisless than 0.1, place
cells remain over-represented at the reward without shifting backwards.
Thisindicates thatincorporating future state-value estimatesinto the TD
erroris essential for driving the backward shift, supporting the idea that
aRPE-like signal underlies the dynamics observed in our experiments.

Discussion

We combined large population recordings® of mouse CAl neurons
with an automated touchscreen reward-based task*** to investigate
the long-term dynamics of reward encoding in the hippocampus.
Our datarevealed areduction in reward signal and an increase in the
responseto the cues that anticipate the reward. This was further sup-
ported by tracking individual cells that are at first tuned to the reward
and gradually shift backwards to encode aspects of the task that are
reward predictors. This backward shift in coding can be explained
by a temporal difference reinforcement learning (TDRL) model of

Nature | www.nature.com | 5



Article

c d h
1 0 R
1%]
200 B
N 30 -
P S o 400 = Mo
o [} 8 - =
= g F 600 — =
-
800 =
- .
1,000 — 20 = B
0123456789 0123456789 » = ic
State State E -
b e =
1,000 -
0 =
=
-~ 200 10 -
\—> | < -
s, 4/\@ 2 400 P =
© =
VAnd AN = 600 S :
S 800 =
1] -
> s
Sr A‘vf\— 1,000 - 0 0o F lﬂ ﬂ 0 =
0123456789 0 500 1,000 Reward Reward 56789
State Trials state state State
i i k
1 [
' 1.1 2 — Reward
°_ < Reward-approach
S RS 8, "0 | —screen
2 H 52
o g it
o T o e
i | © 10 &
1 L] [SRT. . : ; .
Reward Reward- Screen All 0 500 1,000 0 025 050 0.75 1.00
approach Trials y

Fig.5|TD errordrives backward shifting of placefields. a, An agent follows
afixed pathtoaterminal reward state 8. Place cells (Gaussian basis functions)
projecttoacriticcomputing value (v(s)) and TD error (§), which updates both
value estimates and place-field peaks. b, TD error (red vertical line) causes place
fields to shift towards itslocation; as it propagates backwards fromthe reward,
fields shift progressively earlier.S1,S2,and ST denote session 1, session 2, and
session T, respectively, and are used toillustrate session-by-session shifts in place
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¢, TDerror propagates backwards fromstate 7 to state 1across learning trials.

d, Value estimates updateaccordingly. e, Place fields, uniformat first, over-represent
thereward then shift backwards (blackline represents the average peak of reward-
codingcells). f, Three shift patterns: (1) reward cells (yellow) shift backwards;

(2) approachcells (green) shift forwards then backwards; (3) screen cells (purple)

hippocampal place fields. These results highlight a dynamic reor-
ganization of hippocampal representations that supports learning
by gradually shifting its coding toward cues that best predict future
reward. Previous studies have revealed that hippocampal place fields
move towards goal locations early in learning, probably contributing
to what others have observed as an over-representation of rewarded
locations®?. We also observe an over-representation of the reward
location early in our recordings (Extended Data Fig. 3). Other work
has shown a backward skew of hippocampal place fields, independent
of reward locations, onafaster, within-session timescale?. Together,
these outcomes suggest that the hippocampal representation over-
represents rewarded locations at first, and that this is followed by
aslower, weeks-long shift to represent the cues that predict these
rewards. Notably, our TD model also over-represents reward at first
(Fig. 5k), followed by a backward shift of reward-tuned cells with expe-
rience (Fig. Se-i).

The dynamics observed in our CAl data mirror those of the dopa-
minergic output of the ventral tegmental area (VTA). This system
is central to reward learning by RPE?®-*!, as formalized by TDRL*"%,
TDRL has profoundly shaped our understanding of dopaminergic
reward coding, a concept that has also influenced our understand-
ing of hippocampal physiology®. Prevalent implementations of
TDRL make two key predictions: (1) a gradual decrease in reward
response coupled with a gradual increase in response to reward-
predicting cues during learning¥; and (2) a gradual backward tem-
poral shift of the error signal from reward to cues during learning’®.

6 | Nature | www.nature.com

shift forwardslater. a.u.,arbitrary units. g, Peak trajectories of 12 example reward
cellsshow consistent backward shifts (dashed line represents reward). h, Cells
near reward exhibit reliable backward shifts., Correlation between peak timing
and session number replicates (Fig. 4d) (n =280 reward cells, 443 reward-
approachcells, 258 screencells, 1,000 all cells). Bars and error bars represent
mean +s.e.m.j, Thenumber of cellsin the reward zone increases rapidly during
early trials, then declines gradually with continued experience. k, The change
inpercentage of cellsindicates the difference in the number of cellsat the
reward, approach and screenstates between trial 0 and trial1,000. For higher
discount factors we observe areduced reward-cell prevalence and anincrease
inapproachand screen cells. The figure shows the dynamics of one agent,
because thereis nostochasticity inlearning value estimation.

Both of these are well-documented in dopamine neurons, and are
also evident in our data. This resemblance suggests that the dynam-
ics of hippocampal reward representations emerges from inter-
actions within a broader circuit involving the hippocampus and
VTA.

The model presented here extends TDRL by using Gaussian basis
functions as spatial features, which reorganize through the TD error
toimprove state-value estimation and policy learning for reward maxi-
mization™. Because these functions are modulated by the backward-
shifting TD error, the resulting place fields also shift backwards from the
reward. The successor representation algorithm also exhibits a back-
ward shifting of fieldsin the presence of areward", although it tends to
maintain orincrease field density at the reward location, which differs
from the decrease we observe in our experimental data. Although a
TDRL model captures key aspects of the observed dynamics, future
work could consider alternative predictive coding objectives®* and
develop more biologically plausible******¢ hippocampus-dopamine
models beyond backpropagation-based implementations.

Inconclusion, our study uncovers adynamic and organized backward
shift of the hippocampal reward representation during extended expe-
rience. Far from serving as a stationary spatial map, the hippocampus
exhibits predictive coding, progressively tuning its representation to
anticipate future rewards. These insights advance our understanding
of the role of the hippocampus in learning, highlighting its crucial
contribution to the brain’s overarching objective of forecasting and
optimizing future rewards.
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Methods

Mice

Eight naive male mice (C57BL/6 mice, Charles River) were housed
individually and maintained under a 12-h light-dark cycle at 22 °C
and 40% humidity with water ad libitum. Owing to signs of infection
observed during the behavioural testing phase, one of the mice that
had been recorded for seven days was excluded from the analysis.
The infection was considered to be likely to affect task performance
and behavioural outcomes, rendering the data unreliable. All experi-
ments were performed during the light part of the light-dark cycle
and were in accordance with the guidelines of the McGill University
and Douglas Hospital Research Center Animal Use and Care Com-
mittees (protocol 2015-7725) and with Canadian Institutes of Health
Research guidelines.

Surgeries

Mice underwent three surgeries under isoflurane (1.5-2%, v/v). In
addition, carprofen (10 mg kg™) and saline (0.5 ml) were adminis-
tered at the beginning of each surgery. We injected 400 nl of either
AAV9.syn.GCaMP6f.WPRE.SV40 (University of Pennsylvania Vec-
tor Core, 3.26 x 10" genome copies per ml) diluted 1:1 with PBS or
AAV5-CaMKII-GCaMP6fWPRE.SV40 (Addgene, 2.3 x 10" genome
copies per ml)) diluted with PBS 1:2 into dorsal CA1 (-1.8 mm from
Bregma, 1.5 mm mediolateral, 1.45 mmdorsoventral). Two weeks after
viralinjections, a GRIN lens (Edmund Optics, 1.8 mmin diameter, 0.25
pitch, 4.31 mm in length) was implanted above the previous injection
site. In brief, a1.8-mm craniotomy above the injection site was done
followed by aspiration of cortical tissue directly below the craniotomy.
The GRIN lens was lowered to the area of interest and two stainless-steel
screws were threaded into the contralateral skull. Both the GRIN lens
and the screws were fixed with dental cement (C&B Metabond). Silicone
adhesive was used to cover the lens until the next surgery. Two to three
weeks after the GRIN lens implantation, an aluminium baseplate was
attached with dental cement to the mouse’s skull and covered with a
plastic cap to protect the lens.

Apparatus

Mice were trained in the Bussey-Saksida automated touchscreen
operant chamber (Lafayette Instruments)®*. In brief, this trapezoidal-
shaped apparatus features a touch-sensitive LCD computer monitor
(12.1-inch screen, 800 x 600 resolution) at one end and a reward col-
lection magazine (20 cm height x 18 cm length x 6-24 cm width) at
the other, tapering from the touchscreen to the magazine. The arena’s
walls are made of black Perspex, and the floor is perforated stainless
steel with a stainless-steel waste tray underneath. The entire set-up is
housed in a sound- and light-attenuating box equipped with a house
light, a tone generator and a ventilating fan.

Abovethearena, ahouselight (3 W) and a video camera are mounted.
Aperistalticpumpis positioned centrally behind the touchscreen unit
to deliver the liquid reward; in our experiment, we used strawberry-
flavoured milkshake (Québon, Agropur) as the food reward. An infra-
red beam detects entries into the reward-delivery magazine, which
isequipped with a light and a small speaker. In addition, two infrared
beams cross the arena to detect locomotor activity.

To minimize unintended screen touches and to demarcate screen
response locations, ablack Perspex mask with five response windows
(each consisting of 4 x 4-cm square aperture, 1.5 cm above the grid
floor) covered the touchscreen. The task schedules were designed and
managed and the events recorded using Whisker Server and ABETTII
software (Campden Instruments).

Behaviour

Mice were deprived of food until they reached 85-90% of their original
weight. Before starting the delayed nonmatch-to-location task, the

mice underwent several behavioural training stages, as previously
described*®.

Pretraining

The mice were first habituated to human handling in the touchscreen
chamber room for three days. After this, they were acclimated to the
chamber itself, with rewards presented in the reward tray. They could
progress to the next stage once they finished the reward within 20 min,
typically within1-2 days.

After the habituation phase, the mice were trained totouch the screen
when awhite square stimulus was presented pseudo-randomlyinone
of five possible locations on the screen. A reward was given when the
mouse touched the screen while the sample was displayed. The mice
progressed to the next stage after completing 30 trials within 60 min.

The next stage required the mice to touch the white square on the
screen to receive a reward, with the same completion criterion of 30
trials within 60 min. Subsequently, the mice had to learn to initiate
trials by moving to the back of the chamber and breaking the infrared
beam near the reward magazine.

Inthe final pretraining stage, a touch to blank windows resulted in a
five-second timeout, signalled by the illumination of the house light.
Correctiontrials, which repeated the same trial after a five-second ITI,
were administered until the mouse made a correct response. However,
these correctiontrials were notincludedinthe performance calculation.
Reward collectioninitiated a15-second ITI before the next trial began.

Task

The delayed nonmatch-to-location task consists of two phases: the
sample phase, which is an encoding phase, in which the mouse learns
thelocation of the cue; and aretrieval phase, in which it has to remem-
ber the cue location and choose the non-matching one. The first stage
of training is designed to teach the non-matching rule, requiring the
mouse to identify the novel location as the correct choice (Fig. 1f).

During the sample phase, one of five locations on the touchscreen
isilluminated. After anose poke to this location, the mouse is directed
to the back of the chamber by the illumination of the reward tray
(an800-ms pulse delivering 20 pl of milkshake) and an auditory tone.
To maintain the mouse’s engagement in the task, during the sample
phase, asmallincentive (one-quarter of the total reward) is delivered in
one-third of the trials, selected randomly. The smaller magnitude of the
incentive provides the opportunity to compare the reward-encoding
properties during the incentive and the actual reward.

The delay length is maintained at 2 s during learning of the non-
matching rule and is then increased by an increment of 2 s during
specific probe trials. Once the back infrared beams are broken after
the delay period, the original sample and a novel correct location are
presented simultaneously on the touchscreen.

If the mouse makes an incorrect response to the original sample
location, acorrectiontrial loopisinitiated until the correct response is
made. Correction trials are repeated presentations of the same sample
and choice locations after an incorrect response. Mice were trained
until they reached an average of 70% correct over 2 sessions of 36 trials.
Once the micereached the criterion for trials with a two-second delay,
they progressed to trials with a four-second delay, and so on.

Data acquisition

In vivo calcium videos were recorded using a UCLA miniscope® (v.3;
http://miniscope.org) equipped with a monochrome CMOS imag-
ing sensor (MT9V032C12STM, ON Semiconductor). This sensor was
connected to a custom data acquisition (DAQ) box (Miniscope) with
alightweight, flexible coaxial cable. The DAQ box was linked to a PC
usingaUSB 3.0 SuperSpeed cable and operated with Miniscope custom
acquisition software. Videos of mouse behaviour were recorded with
aninfrared camera positioned above the touchscreen. The DAQ simul-
taneously acquired behavioural and cellularimaging streams at 30 Hz



asuncompressed avifiles and all recorded frames were time-stamped
for post hoc alignment. The touchscreen chamber also provides
task-related information such as trial initiation timing, nose pokes to
the screen and reward onset. A touchscreen chamber time stampis also
provided for follow-up alignment with neuronal and behavioural data.

Data preprocessing

We have used a UCLA miniscope to simultaneously record several
hundred neuronsin a freely moving mouse?. This provides the possi-
bility of monitoring hundreds of neurons that arelocated inside of our
field of view. The output of this recording in our experimental set-up
isavideowith 30 frames per second temporal resolutionand 2-3 um
spatial resolution. The temporal resolution is sufficient to capture
the slow dynamics of calcium transients and the spatial resolution is
sufficient to capture the cell bodies. The main steps for analysing the
calciumrecording videos are as follows: (1) within-session motion cor-
rection toaddress small displacements and shakes during recording;
(2) detecting cell bodies; (3) extracting calcium traces for each cell body
by measuring the average fluorescent emission from the detected cell
body; (4) inferring the likelihood of spikes from the raw calcium traces.

Calcium imaging data were preprocessed before analyses using a
pipeline of open-source MATLAB (MathWorks; v.R2021a) functions
to correct for motion artefacts?, segment cells and extract tran-
sients*?*, A second-order autoregressive model is used to infer the
likelihood of spiking events through the deconvolution of the transient
trace as described previously®. The resulting time series is used to
measure the ‘firing rate’.

DeepLabCut, adeep-learning-based pose-estimation tool, was used
to track multiple body parts of the mouse during behaviour*®. The
tracking is used to estimate position, heading direction, speed and
other behavioural features.

Identification of cell types

Toidentify each cell type (reward, reward-approach and screencells),
the averaged neuronal response of each cell to each of the three fea-
tures was calculated. Averaged neuronal activity at reward: average
deconvolved traces during the reward consumption period. Averaged
neuronal activity at reward approach: average deconvolved traces
between the correct choice and the onset of the reward. Neuronal
activity at the screen: average deconvolved traces at a window of
[-150 ms, 150 ms]around screen pokes during choice period. The aver-
aged neuronal activity for each cellis compared to the distribution of
averaged neuronal responses made by 1,000 circular shuffles. Cell
types were identified as those whose neuronal activity exceeded the
99th percentile of the corresponding shuffled distribution.

Tracking cells

To identify cells and track them across days, we first used the con-
strained non-negative matrix factorization (CNMFe) toolbox**! to
simultaneously identify neuron locations, separate spatially overlap-
ping components and denoise and deconvolve spiking activity from
the slow dynamics of the calcium indicator. Once the cells are identi-
fied, we use CellReg to track cells across sessions on the basis of their
spatial footprints®.

Although the effectiveness of this method has been shown in previ-
ousstudies®, we performed additional analyses to verify the reliability
of our cellidentificationand cell tracking and to ensure that potential
errors do not influence our results for cell registration and tracking
procedures.

To do this, first, we made a detailed visualization of the tracked
cells with a close look at their functional properties across sessions.
Extended Data Fig. 9 shows the neuronal footprints of different cell
types. Extended Data Fig. 9b shows the tracking of one reward cell
across sessions. The green contour outlines the detected cell body,
and the sessionsinwhich CellReg*? has failed to track the cell areinred.

This analysis provides visual proof of the reliable tracking of cells across
days, with their tuning properties being preserved around the reward
onset. Extended DataFig. 9biii shows the response of the neurons across
sessions as presented in the main manuscript. To assess the impact of
potential tracking errors, we introduced controlled imperfections:
in Extended Data Fig. 9biv, we artificially replaced each tracked cell
with arandomly selected nearby neuron (within five cell diameters).
As shown, both the consistent response pattern and the structured
backward shifting seen in Extended Data Fig. 9biii disappeared, sup-
porting theidea that these effects rely on accurate cell identification.
We test this null hypothesis more systematically in the next analysis. For
furtherillustration, Extended Data Fig. 9c presents asecond example
neuron, showingsimilarly reliable tracking and reward-related tuning
across sessions.

Furthermore, we tested the robustness of our results against a null
hypothesis to assess how potential misalignment orinaccuraciesin cell
registrationacross days might affect the backward shifting of reward-cell
activity. Tosimulateregistration errors, we randomly selected a propor-
tion of sessions for each tracked reward cell. We replaced the identified
cellfor each of those sessions witharandomly selected nearby neuron
(within five cell diameters). This process introduces a controlled mis-
alignmentin cell registration. For eachreward cell with the new modified
tracking, we computed the average reward response of the cell across
sessions and correlated the timing of peak activity with the session
number. Similar to the analysis in the main text of the paper, anegative
correlation indicates a backward shift in response timing relative to
the reward onset. If the observed backward shiftis a genuine effect, we
expect this correlation to weaken as the proportion of misaligned ses-
sionsincreases. We systematically varied the percentage of misaligned
sessions from 0% (true data with no misalignment) to 100% (complete
misalignment across all sessions) (Extended Data Fig. 9). The analysis
was performed for all tracked reward cells and also for only backward-
shifting reward cells. Bothgroups showed a substantial decrease in the
absolute value of the negative correlation as we increased the level of
misalignment. This result supports the idea that the structured reor-
ganization of reward cells relies on accurate cell identification.

Across 6 mice (the tracking quality for mouse 2 was poor, so it was
excluded from the analysis), we successfully tracked a total of 3,165
neurons, defined as cells that were tracked for at least 5 sessions. To
ensure data quality, we excluded any sessions in which a cell’s activ-
ity variance was below the 50th percentile of the overall distribution
(calculated across all cells and sessions). After applying this filtering
criterion, we retained 1,814 neurons with sufficiently high variance in
activity traces across all tracked sessions. These cells form the basis
for the broader functional analyses presented in the main text and in
Extended Data Figs. 10 and 11. Out of the 1,814 cells that passed our
quality and tracking criteria, we identified 228 reward cells (12.6%), 225
screen cells (12.4%) and 53 reward-approach cells (2.9%). The remain-
ing 1,308 cells (72.1%) did not meet the classification criteria for any
of these 3 functional groups, and we refer to them as non-classified
cells. More analysis on the reliability of our cell tracking is presented
in Extended Data Fig. 9.

Naive Bayes spatial decoding

To decode the positions of mice from calcium traces within each ses-
sion, we divided the spatially binned position (using spatial bins of 1cm
alongeachoftheaxes) and our deconvolved calciumtracesinto fivefold
splits. The binned positions were converted into a one-hot vector.
Using the Gaussian Naive Bayes method from the scikit-learn Python
library, we predicted positions on the withheld data using maximum
likelihood estimation, as follows:

1 —p,)?
P(x;|y) = —exp) - : 2|
‘/Znay 20,
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where x;correspondsto the predicted positionatiand ytotherespec-
tive calcium traces. We assumed a flat prior (equal likelihood at all
positions) and the scikit-learn default o value of 1 x 10~°. The decoded
positionis assigned to the bin with the highest probability. The decod-
ing error was then estimated as the Euclidean distance between
the mouse’s predicted and actual spatial bin position on withheld
data.

CEBRA embedding
CEBRAisanalgorithm that optimizes neural networks that map neural
activity onto an embedding space?®. This algorithm uses contrastive
learning®* and a generalized InfoNCE loss function® to learn repre-
sentations, where similar data points are pulled closer together and
dissimilar data points are pushed apart within the embedding space.
CEBRA has three different modes: CEBRA-Time (fully unsupervised or
self-supervised), CEBRA-Behaviour (supervised) and CEBRA-Hybrid.
In our study, we used CEBRA-Time, so our input data will be unla-
belled and there will be no behavioural assumptions that influence
neuronal activity. CEBRA embedding is used to project the deconvolved
neuronal tracesinto a 32-dimensional latent space®. We set all param-
etersas default and used the same set of parameters across all sessions.

Ml content of task features

CEBRA embeddingis used to project the deconvolved neuronal traces
into a 32-dimensional latent space®. The feature of interest (screen,
reward approach or reward) was presented as a binary vector inwhich
foreach frame, if the mouseis in that conditionitis 1; otherwiseitis O.
Afivefold cross-validation is implemented in which for each fold one
fold of the data is held out, and a scikit-learn-based linear decoder is
trained on the latent presentation to decode the class of the binary
target. The MI®** (using sciki-learn) between the predicted and the
actual target for the held-out datais calculated. The averaged Ml across
fivefoldsis considered the MIfor each recording session. MImeasures
the dependency between two variables. Itis equal to zeroif and only if
tworandom variables areindependent, and higher values mean higher
dependency. Ml between two discrete variables (asin our case) Xand
Y can be calculated as follows:

_ . p(i, )
MIX, Y) = Z, p(u)log—pxm PR

where i covers the values in X andj covers the values in Y. p(i,j) is the
joint distribution of the two variables X and Y. p,(i) is the distribution
function of Xand p,(j) is the distribution function of .

Linear modelling of information content
To compute the contribution of each feature (session number and
mouse performance) in the evolution of hippocampal representation,
we used a MATLARB function, fitlm, to model each of the measures of
interest denoted by Y, by session number and performance. The con-
tribution of each of the features is measured by their contribution to
the explained variance of V:

Session number = vare,; = Varpeformance

Performance = varg,, — varon

Session number and performance = vare,; — Var esion ~ VaT performance

Varion: Model’s explained variance when Yis modelled only by
session number.

Var performance: Model’s explained variance when Yis modelled only by
performance.

varg,: model’s explained variance when Yis modelled by both session
number and performance.

Temporal shifting score
We defined a temporal shifting score by comparing each cell’s true
correlation between peak activity timing and session number to

a shuffled distribution of correlations, providing a standardized
measure of temporal shift.

cfes COITrye ~ H,
Temporal shifting score = ——c—shuffle

Oshuffle

where corr,,,.is the observed correlation coefficient between session
number and the timing of peak activity, and g,y and Ogqe are the
mean and standard deviation of the correlation values obtained from
ashuffled distribution. The shuffled distribution was generated by
randomly permuting session numbers 1,000 times.

Amplitude change score

To quantify changes in response amplitude, we defined an amplitude
change score using the same approach as for the temporal shifting
score, except that we correlated session number with the peak activity
amplitude of each neuron instead of its timing.

) COMyye — 1
Amplitude change score = —— < “shuffle

Oshuffle

where corr,,. isthe observed correlation coefficient between session
number and the response amplitude, and g, e and o . are the mean
and standard deviation of the correlation values obtained from a shuf-
fled distribution. The shuffled distribution was generated by randomly
permuting session numbers 1,000 times.

Identification of backward- and forward-shifting cells
Within-session averaged calcium traces were calculated for each of the
cells. The correlation between the session number and the time of peak
activity was calculated. A shuffled distribution was calculated by cor-
relating the time of peak activities and the shuffled session numbers.
A cell was identified as a backward-shifting cell if its correlation was
less than the 5th percentile of the shuffled distribution. Similarly, a
cellwasidentified as aforward-shifting cell if its correlation was more
thanthe 95th percentile of the shuffled distribution. This criterion sets
the chance level as 5%.

Identification of declining and inclining cells

Similar to backward- and forward-shifting cells, here, within-session
averaged calcium traces were calculated for each of the cells. The cor-
relationbetween the sessionnumber and the amplitude of peak activity
ofraw calcium traces was calculated. A shuffled distribution was calcu-
lated by correlating the amplitude and the shuffled session numbers.
Acellwasidentified as adeclining cellif its correlation was less than the
5th percentile of the shuffled distribution. Similarly, a cellwas identified
as aninclining cell if its correlation was more than the 95th percentile
of the shuffled distribution. This criterion sets the chance level as 5%.

Rate maps

To calculate the rate map for each neuron, we binned the x and y axis
eachinto30bins. Therate value assigned to each bin was simply calcu-
lated by the sum of neuronal activity (deconvolved traces) normalized
by the time the mouse spent in that bin. For visualization, we used a
Gaussian filter of size 5 x 5 bins and o =1bin.

Identification of place cells
We computed the spatialinformation of all cells using the unsmoothed-
event rate map of each cell, as previously described®”.

Spatial information=) p, (%)logz[%)
=i r r

where p;is the probability of the mouse beingin the ith bin (time spent
inithbin/total running time); r;is the Ca®* event rate in the ith bin; and



ristheoverall Ca** eventrate. We then performed 1,000 distinct shuf-
fles of mouse locations during Ca* events and calculated the spatial
information for each shuffle. Cells with spatial information higher
than that of 99% percentile of their shuffles were identified as place
cells.

Box-plot statistics

Box plots were generated using the seaborn.boxplot function. Each
box represents the interquartile range (IQR), defined by the 25th per-
centile (Q1) and 75th percentile (Q3), with a horizontal line indicat-
ing the median. The whiskers extend to the most extreme data points
within 1.5 x IQR from the quartiles. Data points outside this range are
considered outliers and are shown asindividual markers. This visuali-
zation provides asummary of the data distribution, including central
tendency, spread and outlier values for each group or condition.

Measuring the size of the place fields

After identifying place cells and determining their rate maps, we
masked these rate maps by setting all bins with values below the 90th
percentile of values across all bins to zero. This operation createsislands
of non-zeros surrounded by bins of zero value. We used the MATLAB
function bwconncomp to detect theseislands and used regionprops to
calculatetheareaof each of theseislands. The island with the maximum
areawas used to calculate the place-field size. The size of the place field
was then calculated as:

Characteristic size of place field = -/Place field area.

Classification decoding analysis

Alinear support vector machine classifier from MATLAB (fitcecoc)
was used to decode contextual information in the task. For example,
we want to decode the correctness of the trial at different moments of
the task. Population vectors of deconvolved calcium traces were used
to train and test the classifier. Given the limited number of samples,
we used a leave-one-out approach by training our classifier on all
samples except one and testing it on the excluded sample, repeating
this process for each sample point. Ineachiteration, we ensured that
the training dataset contained an equal number of samples from each
class by randomly downsampling the class with a larger number of
samples. For each decoding, we repeated the process five times and
averaged the decoding accuracy across these five iterations. The
classifier’s decoding performance was compared to the accuracy
obtained from shuffled interaction, in which the class labels were
randomly shuffled.

Reward over-representation score

Tomeasure the reward over-representation score within each session,
we first generated the spatial rate map for all cells. We identified the
location of peak activity for each rate map, detecting the spatial bin with
the highest firing rate for all cells. A density plot was then generated to
represent the density of peaksin each spatial bin. This matrix provides
arepresentation of each spatial bin. The reward over-representation
was calculated as the average representation of the 10% of spatial bins
closest to the reward port, normalized by the average representation
across all spatial bins. Inthis context, ascore of lindicates an even dis-
tribution of reward representation compared to the baseline, whereas
avalue greater than 1signifies an over-representation of spatial bins
near the reward port.

Statistical analysis

For visualization, we used error bars (or shaded areas for line plots)
toshows.e.m. Tocompare two distributions, we used the two-sample
Kolmogorov-Smirnov test, through the ‘kstest2’ command in MATLAB.
For comparisons of a distribution against zero, we used the Wilcoxon

signed-rank test, implemented using MATLAB's ‘signrank’ command.
Significance levels for all tests were set at *P < 0.05, **P < 0.01 and
P <0.001.

Simulations for the TD-error-modulated place-cell model
Anatomical relevance. The model’s architecture is motivated by
hippocampal-striatal-VTA circuitry, in which projections from the
hippocampus to the ventral striatum indirectly regulate VTA dopa-
mine activity>**® !, The ventral striatum encodes value ramps and
VTA encodes RPE-like signals****°, Dopaminergic feedback from the
VTA to both the hippocampus and the striatum modulates plasticity
for learning’***2, This circuit organization motivates a feed-forward
structure in which place cells drive RPE computation, and a feedback
structure in which RPE signals modulate plasticity underlying both
value computation*®**** and place-cell spatial selectivity™.

Abstracted navigation task. We modelled navigation as a Markov
decision process with10 discrete states (state O to state 9) ona1D track.
State transitions were deterministic, with the agent receiving reward
R=1bybeingatstate 7and choosing the actionright to reach terminal
state 8. After this, the trial ended immediately, and a new trial began
withthe agent starting at state 1. The state space had absorbing bounda-
ries (nocircular topology) so that the agent could not reach state O from
taking astep from state 9. The results were robust with 5 or 15 states.

Neural representation. Following a previous study", each place cell’s
spatial selectivity ¢;is modelled as a Gaussian radial basis function:

(St _A')z
9(s) =exp[—T; :
wheres,isthe current state; A;is each place cell’s peak activity location,
which was initialized uniformly across states O to 9; and 0= 0.5 is the
spread of each place cell. The agent estimates the value of a location
usingalinear readout of N=1,000 place cells:

1 N
U (s) = N ; w/P(s),

usingthe vector w’. Increasing or decreasing the number of place cells
Ndid notsignificantly change the dynamics of place-cell peak reorgani-
zation as the agent is initialized in a rich-feature learning regime®*®
instead of a lazy-feature learning regime..

Learning algorithm. We assume that the central objective for which
animals are optimizing is reward maximization®. However, we first
consider the simplified case of value estimation, in which the agent
has an optimal policy ", and the objective for the agent is to learn to
estimate the value of the state given a policy. This simplification is
to aid our understanding of the intuition and visualize how the TD
error learning signal directly modulates each place cell’s peak shifts.
Hence, the value estimation objective is to minimize the loss function,
described by the TD error:

T-1
1
y 2 (e, @)+ yulsew’, D) - vls; w’, 1))?

t=0

L(w’, ) =E,_,,{

T-1 1
=Erqe z 76(St'at)2 ’
t=0 2

starting withacommonly used reward discount factor (y = 0.95). Chang-
ing the discount factor influences the backward-shifting dynamics. We
optimize only the critic’s weights (w") and each place cell’s centre of
mass (1) to study how this minimization influences peak activity. This
results in the critic’s weights being updated by:



Article

1
Awtu = N(S(S,)(p(st), w::lil= w[u + ”Awtuv

where = 0.1N. Using chain rule, each place-cell centre is updated
according to:

1 s;—A
A, = N‘S(Str at)w[”gb(st)[%j, Ap= A +nAA,

to minimize the loss function (see Supplementary Information for
derivation). We visualized the value estimation objective in the main
text to understand the intuition of how the TD error modulates each
place cell’s peak shifts. We also investigated how policy learning for
reward maximization (see model details in Supplementary Informa-
tion) influences place-cell shifts (Extended Data Fig. 15), which more
closely replicates the objective of animals and the stochastic shifting
dynamics that were observed in the experimental results.

Reporting summary
Furtherinformation onresearch designis available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability

The complete dataset for allexperiments is available at McGill University
Dataverse (https://doi.org/10.5683/SP3/877CGZ). The dataset should
notbe used for republication without prior consent from the authors.

Code availability

All source codes used in the current study are available on request to
the corresponding authors.

47. Heath, C.J., Phillips, B. U., Bussey, T. J. & Saksida, L. M. Measuring motivation and reward-
related decision making in the rodent operant touchscreen system. Curr. Protoc. Neurosci.
74, 8.341-8.34.20 (2016).

48. Kim, C. H. et al. Trial-unique, delayed nonmatching-to-location (TUNL) touchscreen
testing for mice: sensitivity to dorsal hippocampal dysfunction. Psychopharmacology
232, 3935-3945 (2015).

49. Friedrich, J., Zhou, P. & Paninski, L. Fast online deconvolution of calcium imaging data.
PL0oS Comput. Biol. 13, €1005423 (2017).

50. Lauer, J. et al. Multi-animal pose estimation, identification and tracking with DeepLabCut.
Nat. Methods 19, 496-504 (2022).

51.  Pnevmatikakis, E. A. et al. Simultaneous denoising, deconvolution, and demixing of
calcium imaging data. Neuron 89, 285-299 (2016).

52. Sheintuch, L. et al. Tracking the same neurons across multiple days in Ca® imaging data.
Cell Rep. 21,1102-1115 (2017).

53. Yang, W. et al. Simultaneous multi-plane imaging of neural circuits. Neuron 89, 269-284
(2016).

54. Chen, T, Kornblith, S., Norouzi, M. & Hinton, G. A simple framework for contrastive learning
of visual representations. In International Conference on Machine Learning 1597-1607
(PMLR, 2020).

55. Kraskov, A., Stogbauer, H. & Grassberger, P. Estimating mutual information. Phys. Rev. E
69, 066138 (2004).

56. Ross, B. C. Mutual information between discrete and continuous data sets. PLoS ONE 9,
e87357 (2014).

57. Markus, E. J., Barnes, C. A., McNaughton, B. L., Gladden, V. L. & Skaggs, W. E. Spatial
information content and reliability of hippocampal CA1 neurons: effects of visual input.
Hippocampus 4, 410-421(1994).

58. Floresco, S.B., Todd, C. L. & Grace, A. A. Glutamatergic afferents from the hippocampus
to the nucleus accumbens regulate activity of ventral tegmental area dopamine neurons.
J. Neurosci. 21, 4915-4922 (2001).

59. Barnstedt, O., Mocellin, P. & Remy, S. A hippocampus-accumbens code guides goal-
directed appetitive behavior. Nat. Commun. 15, 3196 (2024).

60. Kalivas, P. W., Churchill, L. & Klitenick, M. A. GABA and enkephalin projection from the
nucleus accumbens and ventral pallidum to the ventral tegmental area. Neuroscience 57,
1047-1060 (1993).

61. Ibrahim, K. M. et al. Dorsal hippocampus to nucleus accumbens projections drive
reinforcement via activation of accumbal dynorphin neurons. Nat. Commun. 15, 750
(2024).

62. Russo, S. J. & Nestler, E. J. The brain reward circuitry in mood disorders. Nat. Rev. Neurosci.
14, 609-625 (2013).

63. Kumar, M. G,, Tan, C., Libedinsky, C., Yen, S.-C. & Tan, A. Y. Y. A nonlinear hidden layer
enables actor-critic agents to learn multiple paired association navigation. Cereb. Cortex
32, 3917-3936 (2022).

64. Krishnan, S., Heer, C., Cherian, C. & Sheffield, M. E. J. Reward expectation extinction
restructures and degrades CA1 spatial maps through loss of a dopaminergic reward
proximity signal. Nat. Commun. 13, 6662 (2022).

65. Bordelon, B. & Pehlevan, C. Self-consistent dynamical field theory of kernel evolution in
wide neural networks. J. Stat. Mech. 2023, 114009 (2023).

66. Vyas, N. et al. Feature-learning networks are consistent across widths at realistic scales.
Adv. Neural Inf. Process. Syst. 36, 1036-1060 (2023).

67. Paninski, L. & Cunningham, J. P. Neural data science: accelerating the experiment-
analysis-theory cycle in large-scale neuroscience. Curr. Opin. Neurobiol. 50, 232-241
(2018).

68. Jazayeri, M. & Ostojic, S. Interpreting neural computations by examining intrinsic
and embedding dimensionality of neural activity. Curr. Opin. Neurobiol. 70, 113-120
(2021).

69. Urai, A.E. et al. Large-scale neural recordings call for new insights to link brain and
behavior. Nat. Neurosci. 25, 11-19 (2022).

70. Yu, B. M. etal. Gaussian-process factor analysis for low-dimensional single-trial analysis
of neural population activity. J. Neurophysiol. 102, 614-635 (2009)

71. Hollup, S. A. Molden, S, Donnett, J. G., Moser, M. B. & Moser,E. |. Accumulation of
hippocampal place fields at the goal location in an annular watermaze task. J. Neurosci.
21,1635-1644 (2001).

Acknowledgements We thank the members of the M.P.B. laboratory for discussions and for
providing inputs during the analysis of the data; in particular, Z. Ajabi and J. Q. Lee. We thank
M. lordanova, B. Richards, E. J. P. Maes, J. Quinn Lee, H. Nagaraj, Z. Haggee and A. Sharma for
comments on the first draft of this manuscript, and A. Peyrache and B. Richards for their
guidance on data analysis. M.G.K. and C.P. were supported by an NSF award (DMS-2134157).
C.P. was also supported by an NSF CAREER award (1S-2239780), a Sloan Research Fellowship
and the William F. Milton Fund from Harvard University. This work was made possible in part by
a gift from the Chan Zuckerberg Initiative Foundation to establish the Kempner Institute for the
Study of Natural and Artificial Intelligence. This work was also supported by funding from
Fonds de Recherche du Québec - Santé (FRQS) postdoctoral fellowships awarded to A.N.-P.
and C.-A.M.; CIHR project grants 463403 and 480510 to M.P.B.; and a Core Facilities and
Technology Development grant from the Canada First Research Excellence Fund, ‘Health
Brains for Health Lives’, to SW. and M.P.B.

Author contributions M.Y., A.N.-P.,, SW. and M.P.B. conceptualized the project. A.N.-P. performed
surgeries and recordings. M.Y. organized the raw data and did the preprocessing, analysis,
modelling and data visualization. M.Y., TG. and EW. did the preprocessing of the data. M.G.K.
developed the model and ran the simulations. M.G.K. and M.Y. analysed the simulated data. C.P.
supervised the modelling section. MY., M.G.K. and C.-A.M. wrote the initial draft. MY.,, M.G.K.,
C.-A.M., C.P,, SW. and M.P.B. contributed to editing and revising the first draft of the paper. M.P.B.
guided and supervised all stages of experiments and data analysis.

Competing interests The authors declare no competing interests.

Additional information

Supplementary information The online version contains supplementary material available at
https://doi.org/10.1038/s41586-025-09958-0.

Correspondence and requests for materials should be addressed to Mohammad Yaghoubi or
Mark P. Brandon.

Peer review information Nature thanks the anonymous reviewer(s) for their contribution to the
peer review of this work. Peer reviewer reports are available.

Reprints and permissions information is available at http://www.nature.com/reprints.



