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Predictive coding of reward in the 
hippocampus

Mohammad Yaghoubi1,2 ✉, M. Ganesh Kumar3,4,5, Andres Nieto-Posadas1, Coralie-Anne Mosser1, 
Thomas Gisiger1, Émmanuel Wilson1, Cengiz Pehlevan3,4,5, Sylvain Williams1,2 & 
Mark P. Brandon1,2 ✉

Anticipating future outcomes is a fundamental task of the brain1–3. This process 
requires learning the states of the world as well as the transitional relationships 
between those states. In rodents, the hippocampal spatial cognitive map is thought  
to be one such internal model4. However, evidence for predictive coding5,6 and reward 
sensitivity7–10 in the hippocampal neuronal representation suggests that its role 
extends beyond purely spatial representation. How this reward representation 
evolves over extended experience remains unclear. Here we track the evolution of the 
hippocampal reward representation over weeks as mice learn to solve a cognitively 
demanding reward-based task. We "nd several lines of evidence, both at the population 
and the single-cell level, indicating that the hippocampal representation becomes 
predictive of reward as the mouse learns the task over several weeks. Both the 
population-level encoding of reward and the proportion of reward-tuned neurons 
decrease with experience. At the same time, the representation of features that 
precede the reward increases with experience. By tracking reward-tuned neurons  
over time, we "nd that their activity gradually shifts from encoding the reward itself to 
representing preceding task features, indicating that experience drives a backward-
shifted reorganization of neural activity to anticipate reward. We show that a temporal 
di#erence model of place "elds11 recapitulates these results. Our "ndings underscore 
the dynamic nature of hippocampal representations, and highlight their role in 
learning through the prediction of future outcomes.

The hippocampus represents a mixture of spatial (such as place12, land-
mark13 and so on) and non-spatial (such as time14, sound frequency15 
and so on) environmental features. The collective encoding of envi-
ronmental features and their relationships, known as a cognitive map4, 
is thought to support spatial navigation and memory-related behav-
iours. From an evolutionary standpoint, an animal’s survival depends 
on using these cognitive abilities to efficiently learn and remember 
rewarding experiences, such as navigating to home, safety and food. 
This computation is supported by an experience-dependent spatial 
cognitive map in the hippocampus7,16. Therefore, the hippocampal 
representation of the environment is expected to undergo consider-
able changes once an animal has learned how to navigate to reward-
ing locations or has mapped environmental features associated with  
rewards17.

Previous studies have shown that the hippocampus encodes reward- 
related events at multiple time points, including reward approach, 
onset, location and history7. During reward approach, running toward 
a known goal induces place-specific firing patterns along the path that 
differ from firing during random foraging in the same environment9. 
Place fields also cluster near reward sites, generating a reward over-
representation8,18. At reward arrival, a distinct group of hippocampal 

neurons consistently encodes reward delivery, independent of loca-
tion or context, indicating that reward signals can be separated from 
place coding10. The hippocampus also encodes reward history: after 
probabilistic reward delivery and after leaving the reward site, neuronal 
firing changes depending on the reward outcome19. Although these 
studies describe how hippocampal representations change before 
and after learning reward locations, how these dynamics emerge and 
evolve with experience over days, weeks or months remains unknown.

The hippocampus has been shown to support predictive models in 
various species5,20. We propose that a reorganization of hippocampal 
representations—in particular, reward representation—during learn-
ing of a reward-based task will occur to support reward prediction. We 
examine this hypothesis by tracking the evolution of the hippocampal 
representation across weeks as mice perform a reward-based task.

Calcium imaging of CA1 neurons
We used a one-photon miniaturized head-mounted fluorescent micro-
scope21 to perform calcium imaging of CA1 of dorsal hippocampus in 
seven mice (Fig. 1a). Mice were injected with a viral construct to express 
GCaMP6f in dorsal CA1 and were implanted with a gradient refractive 
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index (GRIN) lens targeting CA1 (see ‘Surgeries’ in Methods). Calcium 
recording data were preprocessed to correct for motion artefacts22, 
segment cells, extract calcium transients23 and deconvolve the traces 
(Fig. 1b,c and Extended Data Fig. 1). We recorded 504 ± 101 (mean ± s.d.) 
neurons across sessions and mice (Fig. 1d). We used a 20 % 18-cm auto-
mated touchscreen recording box24,25 to monitor mouse behaviour.  
The box consists of a touchscreen in front, a reward port in the back 
and an infrared camera on top to record behaviour (Fig. 1e). Mice were 
trained on a delayed non-matching-to-location task, where a sample 
appeared randomly on the left or right screen after trial initiation. After 
a nose poke to the sample, the delay starts. At the end of the delay, a tone 
and light cue signalled the mouse to move to the back of the cage and 
break a beam to initiate the choice phase. During the choice phase, two 
white squares are displayed and mice must choose the non-matching 
square to receive the reward (Fig. 1e,f). Mice performed one session per 
day. When the mouse reached a high level of performance, we increased 
the delay between the sample and the choice phase to make the task 
more challenging. This served two purposes: (1) to separate the effects 
of experience (session number) from learning (performance) on hip-
pocampal activity; and (2) to keep mice continuously learning, engag-
ing relevant neuronal circuits throughout recordings. Mice exhibited 
increased performance, for each delay duration, over time (Fig. 1g and 
Extended Data Fig. 1). The following sections focus on the encoding of 
reward. An extended analysis of spatial tuning and decoding reveals that 
hippocampal neurons are involved in representing multiple aspects of 
the task (Extended Data Figs. 2–4).

Reward encoding decreases with experience
We investigated the dynamics of reward representation in the hip-
pocampus as mice learn to solve the delayed non-match-to-location 
task. The learning period varied, taking a few weeks depending on 
each mouse’s learning rate (Extended Data Fig. 1). To quantify the 
reward-encoding signal across sessions, we measured reward informa-
tion at the population level using an information-theoretic analysis in 
the CEBRA-derived latent space (see ‘CEBRA embedding’ in Methods). 
This framework enabled us to track reward representation changes with 
experience. At the single-cell level, we used a shuffle-control approach 
to identify reward cells per session and tracked their percentage across 

days. Both analyses indicate that reward representation declines mainly 
with experience, not performance.

Our data suggest that a dedicated subpopulation of cells is responsive 
to reward (Fig. 2a). Notably, distinct subpopulations encode the reward 
depending on whether the mouse approached the reward from the left 
or right choice on the touchscreen. The sorted calcium traces show 
that reward neurons are not necessarily tuned to the reward onset10 
but form a reliable sequence spanning the entire duration of reward 
consumption (Fig. 2a and Extended Data Fig. 4).

Using CEBRA26, we projected our deconvolved calcium traces into a 
32-dimensional latent space. To quantify the information content of the 
reward representation, we used a fivefold cross-validation approach to 
decode the reward moments from latent space. The cross-fold-averaged 
mutual information (MI) between the decoded reward traces and the 
actual reward traces was regarded as the reward information content 
for each session (Fig. 2b and Extended Data Fig. 5). Correlating reward 
information content (we call it reward MI) with session number (day) 
and mouse performance indicates a negative correlation with session 
number and a weak correlation with mouse performance (Fig. 2b). The 
result is consistent across mice (Fig. 2c). A linear model (see ‘Linear 
modelling of information content’ in Methods) showed that variance 
in reward MI is explained mainly by experience, not by performance 
(Fig. 2c).

At the single-cell level, we used a shuffle-control procedure to iden-
tify reward cells (see ‘Identification of cell types’ in Methods) (Fig. 2d). 
This resulted in 8.5 ± 1.5% of the cells being identified as reward cells 
(Fig. 2e). Reward-cell tuning curves show two features: (1) responses 
depend on the mouse’s approach direction to the reward port; and (2) 
cells are tuned to distinct moments of reward consumption, extending 
beyond reward onset (Fig. 2d and Extended Data Fig. 4). Furthermore, 
reward cells exhibit greater firing during task engagement than dur-
ing inter-trial intervals (ITIs) (Extended Data Fig. 4). Notably, consist-
ent with the population-level analysis, the percentage of reward cells 
declined with session number but showed only a weak correlation with 
performance (Fig. 2f), a pattern consistent across mice (Fig. 2g). A linear 
model indicates that a significant amount of the variance in the dynam-
ics of reward-cell recruitment is attributed to session number rather 
than to mouse performance (Fig. 3g). Both population and single-cell 
level analysis reveal that the reward representation decreases with 
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Fig. 1 | Imaging of CA1 neuronal activity in mice while they perform a reward-
based task. a, Schematic of the surgical strategy. Right, magnification of the 
boxed region. Scale bars, 1 mm (left); 200 µm (right). b, Example CA1 field of view 
(FOV) with identified cells. Scale bar, 200 µm. c, Extracted calcium traces of nine 
representative cells (top rows) and their corresponding deconvolved traces 
(bottom rows). d, Number of identified cells across mice (number of sessions per 
mouse from left to right: 33, 53, 17, 18, 24, 23, 13). Box plots show median (centre 

line), 25th–75th percentiles (box) and range within 1.5 % interquartile range  
(IQR; whiskers); points beyond whiskers are outliers. The dashed line and the 
shading represent the mean ± s.d. (504 ± 101) of the number of cells. e, Schematic 
of the touchscreen chamber. f, Schematic of the task. g, Mouse performance for 
the first and last day for each delay (n = 7 mice). Bar graph and error bars show 
mean ± s.e.m. Dashed line shows the chance level. The schematic in a was created 
using CoreIDRAW; illustrations in e,f were created using Affinity Designer.
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experience. To rule out potential preprocessing effects, we identified 
reward cells using both deconvolved traces and the area under the 
curve (AUC) of raw calcium signals, finding similar dynamics in reward 
MI and cell recruitment (Extended Data Fig. 6). Additional analyses 
confirmed that the decline in reward representation was not due to 
task difficulty (delay length) or behaviour variability (running speed 
before reward) (Extended Data Fig. 7). The gradual reorganization of 
reward representation prompted us to examine hippocampal dynamics 
for other task features, such as the pre-reward epoch.

Pre-reward encoding increases with learning
In this section, we apply the same methodology used to measure hip-
pocampal reward representation to quantify the evolution of hip-
pocampal encoding of pre-reward moments. Specifically, we analysed 
two pre-reward events: (1) screen, the [&150, 150]-ms window around 

the choice touch; and (2) reward approach, the interval between a 
choice and a reward as the mouse runs to the port. Using the same 
methods as for reward, we assessed both population- and single-cell-
level encoding of these events to track how their representations evolve 
with time.

Distinct neuron subpopulations encoded left versus right choices at 
the touchscreen (Fig. 3a). We applied the same analysis used for reward 
to measure population-level screen information content. In contrast to 
that observed for reward, screen information increased with both ses-
sion number and mouse performance (Fig. 3b). A linear model indicates 
that both factors contribute significantly to explaining the variance 
in the dynamics of the screen information content (Fig. 3b). A similar 
analysis for reward-approach encoding indicates a similar positive 
correlation for the reward-approach information content (Fig. 3c,d).

At the single-cell level, screen and reward-approach cells were identi-
fied using a shuffle-control procedure (see ‘Identification of cell types’ 
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Fig. 2 | Dynamics of reward encoding during learning. a, Top, raw calcium 
traces from 350 neurons in one session. Blue and orange bands mark reward 
consumption time after right (blue) and left (orange) approaches. First 45 
reward-responsive cells are sorted by peak activity; insets show reward-cell 
responses for right (blue, cells 1–20) and left (orange, cells 21–45) approaches. 
Middle, averaged activity of left- and right-preferring reward cells. Bottom, 
mouse speed. b, Reward mutual information (MI) declines with session number 
(r = –0.83, two-sided t-test P = 0.0001) but shows weak correlation with 
performance (r = –0.13, two-sided t-test P = 0.57). c, The effect is consistent 
across mice (n = 7) (two-sided Wilcoxon signed-rank, P = 0.0469); linear 
modelling confirms that session number is the dominant factor explaining 
reward MI dynamics. d, Tuning of two reward cells. First row, place fields. 
Second row, vectorized place fields. Third row, trial-by-trial calcium activity 
aligned to reward onset. First and second white lines indicate the start and 
offset of reward consumption, respectively. Trials are sorted by reward 

consumption duration. Fourth row, average calcium traces across trials 
(mean ± s.e.m.). e, Percentage of identified reward cells across mice.  
The numbers for each mouse show the cross-session average number of reward 
cells. The dashed line and the shading represent the mean number of reward 
cells ± s.e.m. (8.5 ± 1.5%) across mice. Box plots show median (centre line),  
25th–75th percentiles (box) and range within 1.5 % IQR (whiskers); points beyond 
whiskers are outliers. f, Percentage of reward cells decreases with session number 
(r = –0.52, two-sided t-test P = 0.0096) but not with performance (r = –0.15, 
two-sided t-test P = 0.48). g, The effect is consistent across mice (n = 7) (two-sided 
Wilcoxon signed-rank, P = 0.0312). Linear modelling confirms that session 
number is the main factor explaining variance in reward-cell recruitment.  
Bar graphs and error bars in c,g show mean ± s.e.m. In b,f, the solid line shows the 
linear regression fit (least-squares) and the shaded error band represents the 95% 
confidence interval.
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in Methods). We identified 7.5 ± 0.7% of the cells as screen cells and 
5.7 ± 0.7% as reward-approach cells (Extended Data Fig. 5). The percent-
age of identified cells for both screen and reward-approach cells shows a 
positive correlation with both session number and mouse performance 
(Fig. 5b,e). A linear model reveals that both session number and perfor-
mance contribute significantly to the dynamics of recruitment of screen 
and reward-approach cells (Fig. 5c,f). Finally, we compared calcium 
response amplitudes of reward-approach cells during approaches to 
the main reward versus the smaller incentive given during the delay, 
and found that reward magnitude modulated their activity significantly 
(Extended Data Fig. 8).

Together, these results show distinct dynamics: with experience, 
measures of reward encoding decline at both population and single-
cell levels, whereas measures of screen and reward-approach encoding 
increase.

Backward shift of reward coding during learning
Across all mice, we were able to track 1,814 neurons (see ‘Tracking 
cells’ in Methods and Extended Data Fig. 9). Out of 1,814 cells, 225 
were reward cells (12.4%), 225 were screen cells (12.4%) and 53 were 
reward-approach cells (2.9%). The remaining 1,311 cells (72.3%) are 
labelled as non-classified cells. Next, we examine the functional proper-
ties and evolution of these cells across sessions.

Our data reveal that a significant number of reward cells exhibit a 
backward shift across sessions from reward to the reward approach 
and screen, termed as backward-shifting reward cells (Fig. 4a–c and 
Extended Data Figs. 10, 12 and 13). Specifically, we report a signifi-
cant negative correlation between the response timing and the ses-
sion number for reward cells and reward-approach cells (Fig. 4d). 
Using a shuffle-control method, we found that 21% (47 out of 225) of 
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tracked reward cells showed backward shifting—well above the 5% 
chance level (Fig. 4e). A substantial portion (60%; 28 out of 47 cells) 
of backward-shifting reward cells shifted enough to be classified as 
screen or reward-approach cells in later sessions (Fig. 4b). Detection 
of forward-shifting reward cells was at chance levels (Fig. 4e). Unlike 
reward cells, we found that screen and reward-approach cells exhibited 
a mixture of backward and forward shifting (Fig. 4e).

We also examined whether neuron response amplitudes changed 
across sessions. Using a similar approach to that used for temporal 
shifts, we correlated each neuron’s peak amplitude with session number 
instead of peak timing. Many neurons across all cell types show declin-
ing activity over sessions, suggesting that, alongside backward shifts, 
reduced firing of some reward cells contributes to the population-level 
decrease in reward representation (Extended Data Figs. 11, 12 and 14).

A TD error model recapitulates the backward shift
The marked similarity of the backward-shifting reward cells to the 
reward prediction error (RPE) response observed in midbrain dopa-
mine neurons motivated us to see whether a temporal difference (TD) 
learning model of the hippocampal representation could explain our 
observations. We focused on the segment from choice at the screen 
to reward, modelling it as a one-dimensional (1D) navigation task: the 
agent moves from state 1 (choice at screen) through to state 7 (reward 
port nose poke) and receives a reward at terminal state 8 (Fig. 5a,b).

In our model, at initiation, 1,000 place cells uniformly tile the 1D 
state space with each cell’s state selectivity described by a Gaussian 
radial basis function. The place-cell population activity is passed to 
a critic (v) for value estimation and TD (δ) computation. The objec-
tive is to minimize the TD error by updating both the value func-
tion and place-cell peaks (see ‘Simulations for TD-error-modulated 
place-cell model’ in Methods). This causes backward shifting of TD 
error from the reward to the start state (Fig. 5b,c), driving backward 
updates in state-value estimates and correspondingly backward shifts 

in place-cell peaks (Fig. 5d–i) (see model details in Supplementary 
Information and ‘Simulations for TD-error-modulated place-cell 
model’ in Methods). Three main reorganization patterns appear: 
(1) reward-proximal cells shift monotonically backward; (2) reward-
approach cells first move towards the reward, then shift backwards; 
and (3) screen-proximal cells shift forwards late in learning (Fig. 5f). In 
addition, we extended the model to a policy-learning agent, in which 
place cells evolve to maximize rewards, mirroring animal behaviour. 
Despite the added complexity (Extended Data Fig. 15), spatial selectiv-
ity still shifts as in Fig. 5. In the early learning phase, the model repli-
cates the over-representation of the reward state by place cells8,27, as 
observed in previous experiments (Fig. 5j), and in the later phase, a 
gradual decrease is observed, consistent with our experimental results  
(Fig. 2f).

Our modelling underscores the crucial role of reward predictability. 
Specifically, the backward shift is seen only when the reward discount 
factor (γ), which determines the influence of future state values in the TD 
error calculation, is greater than 0.1 (Fig. 5k). When γ is less than 0.1, place 
cells remain over-represented at the reward without shifting backwards. 
This indicates that incorporating future state-value estimates into the TD 
error is essential for driving the backward shift, supporting the idea that 
a RPE-like signal underlies the dynamics observed in our experiments.

Discussion
We combined large population recordings21 of mouse CA1 neurons 
with an automated touchscreen reward-based task24,25 to investigate 
the long-term dynamics of reward encoding in the hippocampus. 
Our data revealed a reduction in reward signal and an increase in the 
response to the cues that anticipate the reward. This was further sup-
ported by tracking individual cells that are at first tuned to the reward 
and gradually shift backwards to encode aspects of the task that are 
reward predictors. This backward shift in coding can be explained 
by a temporal difference reinforcement learning (TDRL) model of 
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Fig. 4 | Weeks-long backward shift of reward encoding during learning.  
a, Ten representative backward-shifting reward cells. Rows show average 
calcium activity at reward from first (top) to last (bottom) session. Numbers 
indicate the correlation between peak timing and session number. Overlapping 
contours of cell bodies across sessions are shown on the left. b, Peak activity 
timing relative to reward onset across sessions for all backward-shifting reward 
cells, sorted by mean peak timing. c, Each point represents the timing of peak 
activity for a single backward-shifting reward cell in a given session. Scatter 

plot shows 47 backward-shifting reward cells (each tracked across an average  
of 10 sessions; total n = 473 data points). Black line indicates the within-session 
average of peak times, and error bars are s.e.m. d, Correlation between peak 
activity timing and session number across all tracked cells for each cell type 
(n = 228 reward cells, 53 reward-approach cells, 225 screen cells and 1,308 
non-classified cells). Bar graphs and error bars show mean ± s.e.m. e, Proportion 
of cells identified as forward-shifting (FW) and backward-shifting (BW) for each 
cell type. Dashed line indicates chance level.
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hippocampal place fields. These results highlight a dynamic reor-
ganization of hippocampal representations that supports learning 
by gradually shifting its coding toward cues that best predict future 
reward. Previous studies have revealed that hippocampal place fields 
move towards goal locations early in learning, probably contributing 
to what others have observed as an over-representation of rewarded 
locations8,27. We also observe an over-representation of the reward 
location early in our recordings (Extended Data Fig. 3). Other work 
has shown a backward skew of hippocampal place fields, independent 
of reward locations, on a faster, within-session timescale28. Together, 
these outcomes suggest that the hippocampal representation over-
represents rewarded locations at first, and that this is followed by 
a slower, weeks-long shift to represent the cues that predict these 
rewards. Notably, our TD model also over-represents reward at first 
(Fig. 5k), followed by a backward shift of reward-tuned cells with expe-
rience (Fig. 5e–i).

The dynamics observed in our CA1 data mirror those of the dopa-
minergic output of the ventral tegmental area (VTA). This system 
is central to reward learning by RPE29–31, as formalized by TDRL31–35. 
TDRL has profoundly shaped our understanding of dopaminergic 
reward coding, a concept that has also influenced our understand-
ing of hippocampal physiology36. Prevalent implementations of 
TDRL make two key predictions: (1) a gradual decrease in reward 
response coupled with a gradual increase in response to reward-
predicting cues during learning1,37; and (2) a gradual backward tem-
poral shift of the error signal from reward to cues during learning38. 

Both of these are well-documented in dopamine neurons, and are 
also evident in our data. This resemblance suggests that the dynam-
ics of hippocampal reward representations emerges from inter-
actions within a broader circuit involving the hippocampus and  
VTA.

The model presented here extends TDRL by using Gaussian basis 
functions as spatial features, which reorganize through the TD error 
to improve state-value estimation and policy learning for reward maxi-
mization11. Because these functions are modulated by the backward-
shifting TD error, the resulting place fields also shift backwards from the 
reward. The successor representation algorithm also exhibits a back-
ward shifting of fields in the presence of a reward11, although it tends to 
maintain or increase field density at the reward location, which differs 
from the decrease we observe in our experimental data. Although a 
TDRL model captures key aspects of the observed dynamics, future 
work could consider alternative predictive coding objectives39–41 and 
develop more biologically plausible40,42–46 hippocampus–dopamine 
models beyond backpropagation-based implementations.

In conclusion, our study uncovers a dynamic and organized backward 
shift of the hippocampal reward representation during extended expe-
rience. Far from serving as a stationary spatial map, the hippocampus 
exhibits predictive coding, progressively tuning its representation to 
anticipate future rewards. These insights advance our understanding 
of the role of the hippocampus in learning, highlighting its crucial 
contribution to the brain’s overarching objective of forecasting and 
optimizing future rewards.
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because there is no stochasticity in learning value estimation.
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Methods
Mice
Eight naive male mice (C57BL/6 mice, Charles River) were housed 
individually and maintained under a 12-h light–dark cycle at 22 °C 
and 40% humidity with water ad libitum. Owing to signs of infection 
observed during the behavioural testing phase, one of the mice that 
had been recorded for seven days was excluded from the analysis. 
The infection was considered to be likely to affect task performance 
and behavioural outcomes, rendering the data unreliable. All experi-
ments were performed during the light part of the light–dark cycle 
and were in accordance with the guidelines of the McGill University 
and Douglas Hospital Research Center Animal Use and Care Com-
mittees (protocol 2015–7725) and with Canadian Institutes of Health 
Research guidelines.

Surgeries
Mice underwent three surgeries under isoflurane (1.5–2%, v/v). In 
addition, carprofen (10 mg kg&1) and saline (0.5 ml) were adminis-
tered at the beginning of each surgery. We injected 400 nl of either 
AAV9.syn.GCaMP6f.WPRE.SV40 (University of Pennsylvania Vec-
tor Core, 3.26 % 1014 genome copies per ml) diluted 1:1 with PBS or 
AAV5-CaMKII-GCaMP6f.WPRE.SV40 (Addgene, 2.3 % 1013 genome 
copies per ml)) diluted with PBS 1:2 into dorsal CA1 (&1.8 mm from 
Bregma, 1.5 mm mediolateral, 1.45 mm dorsoventral). Two weeks after 
viral injections, a GRIN lens (Edmund Optics, 1.8 mm in diameter, 0.25 
pitch, 4.31 mm in length) was implanted above the previous injection 
site. In brief, a 1.8-mm craniotomy above the injection site was done 
followed by aspiration of cortical tissue directly below the craniotomy. 
The GRIN lens was lowered to the area of interest and two stainless-steel 
screws were threaded into the contralateral skull. Both the GRIN lens 
and the screws were fixed with dental cement (C&B Metabond). Silicone 
adhesive was used to cover the lens until the next surgery. Two to three 
weeks after the GRIN lens implantation, an aluminium baseplate was 
attached with dental cement to the mouse’s skull and covered with a 
plastic cap to protect the lens.

Apparatus
Mice were trained in the Bussey-Saksida automated touchscreen  
operant chamber (Lafayette Instruments)25,47. In brief, this trapezoidal- 
shaped apparatus features a touch-sensitive LCD computer monitor 
(12.1-inch screen, 800 % 600 resolution) at one end and a reward col-
lection magazine (20 cm height % 18 cm length % 6–24 cm width) at 
the other, tapering from the touchscreen to the magazine. The arena’s 
walls are made of black Perspex, and the floor is perforated stainless 
steel with a stainless-steel waste tray underneath. The entire set-up is 
housed in a sound- and light-attenuating box equipped with a house 
light, a tone generator and a ventilating fan.

Above the arena, a house light (3 W) and a video camera are mounted. 
A peristaltic pump is positioned centrally behind the touchscreen unit 
to deliver the liquid reward; in our experiment, we used strawberry- 
flavoured milkshake (Québon, Agropur) as the food reward. An infra-
red beam detects entries into the reward-delivery magazine, which 
is equipped with a light and a small speaker. In addition, two infrared 
beams cross the arena to detect locomotor activity.

To minimize unintended screen touches and to demarcate screen 
response locations, a black Perspex mask with five response windows 
(each consisting of 4 % 4-cm square aperture, 1.5 cm above the grid 
floor) covered the touchscreen. The task schedules were designed and 
managed and the events recorded using Whisker Server and ABETTII 
software (Campden Instruments).

Behaviour
Mice were deprived of food until they reached 85–90% of their original 
weight. Before starting the delayed nonmatch-to-location task, the 

mice underwent several behavioural training stages, as previously 
described48.

Pretraining
The mice were first habituated to human handling in the touchscreen 
chamber room for three days. After this, they were acclimated to the 
chamber itself, with rewards presented in the reward tray. They could 
progress to the next stage once they finished the reward within 20 min, 
typically within 1–2 days.

After the habituation phase, the mice were trained to touch the screen 
when a white square stimulus was presented pseudo-randomly in one 
of five possible locations on the screen. A reward was given when the 
mouse touched the screen while the sample was displayed. The mice 
progressed to the next stage after completing 30 trials within 60 min.

The next stage required the mice to touch the white square on the 
screen to receive a reward, with the same completion criterion of 30 
trials within 60 min. Subsequently, the mice had to learn to initiate 
trials by moving to the back of the chamber and breaking the infrared 
beam near the reward magazine.

In the final pretraining stage, a touch to blank windows resulted in a 
five-second timeout, signalled by the illumination of the house light. 
Correction trials, which repeated the same trial after a five-second ITI, 
were administered until the mouse made a correct response. However, 
these correction trials were not included in the performance calculation. 
Reward collection initiated a 15-second ITI before the next trial began.

Task
The delayed nonmatch-to-location task consists of two phases: the 
sample phase, which is an encoding phase, in which the mouse learns 
the location of the cue; and a retrieval phase, in which it has to remem-
ber the cue location and choose the non-matching one. The first stage 
of training is designed to teach the non-matching rule, requiring the 
mouse to identify the novel location as the correct choice (Fig. 1f).

During the sample phase, one of five locations on the touchscreen 
is illuminated. After a nose poke to this location, the mouse is directed 
to the back of the chamber by the illumination of the reward tray  
(an 800-ms pulse delivering 20 µl of milkshake) and an auditory tone. 
To maintain the mouse’s engagement in the task, during the sample 
phase, a small incentive (one-quarter of the total reward) is delivered in 
one-third of the trials, selected randomly. The smaller magnitude of the 
incentive provides the opportunity to compare the reward-encoding 
properties during the incentive and the actual reward.

The delay length is maintained at 2 s during learning of the non- 
matching rule and is then increased by an increment of 2 s during 
specific probe trials. Once the back infrared beams are broken after 
the delay period, the original sample and a novel correct location are 
presented simultaneously on the touchscreen.

If the mouse makes an incorrect response to the original sample 
location, a correction trial loop is initiated until the correct response is 
made. Correction trials are repeated presentations of the same sample 
and choice locations after an incorrect response. Mice were trained 
until they reached an average of 70% correct over 2 sessions of 36 trials. 
Once the mice reached the criterion for trials with a two-second delay, 
they progressed to trials with a four-second delay, and so on.

Data acquisition
In vivo calcium videos were recorded using a UCLA miniscope21 (v.3; 
http://miniscope.org) equipped with a monochrome CMOS imag-
ing sensor (MT9V032C12STM, ON Semiconductor). This sensor was 
connected to a custom data acquisition (DAQ) box (Miniscope) with 
a lightweight, flexible coaxial cable. The DAQ box was linked to a PC 
using a USB 3.0 SuperSpeed cable and operated with Miniscope custom 
acquisition software. Videos of mouse behaviour were recorded with 
an infrared camera positioned above the touchscreen. The DAQ simul-
taneously acquired behavioural and cellular imaging streams at 30 Hz 



as uncompressed avi files and all recorded frames were time-stamped 
for post hoc alignment. The touchscreen chamber also provides 
task-related information such as trial initiation timing, nose pokes to 
the screen and reward onset. A touchscreen chamber time stamp is also 
provided for follow-up alignment with neuronal and behavioural data.

Data preprocessing
We have used a UCLA miniscope to simultaneously record several 
hundred neurons in a freely moving mouse21. This provides the possi-
bility of monitoring hundreds of neurons that are located inside of our 
field of view. The output of this recording in our experimental set-up 
is a video with 30 frames per second temporal resolution and 2–3 µm 
spatial resolution. The temporal resolution is sufficient to capture 
the slow dynamics of calcium transients and the spatial resolution is 
sufficient to capture the cell bodies. The main steps for analysing the 
calcium recording videos are as follows: (1) within-session motion cor-
rection to address small displacements and shakes during recording; 
(2) detecting cell bodies; (3) extracting calcium traces for each cell body 
by measuring the average fluorescent emission from the detected cell 
body; (4) inferring the likelihood of spikes from the raw calcium traces.

Calcium imaging data were preprocessed before analyses using a 
pipeline of open-source MATLAB (MathWorks; v.R2021a) functions 
to correct for motion artefacts22, segment cells and extract tran-
sients22,23,49. A second-order autoregressive model is used to infer the 
likelihood of spiking events through the deconvolution of the transient 
trace as described previously49. The resulting time series is used to 
measure the ‘firing rate’.

DeepLabCut, a deep-learning-based pose-estimation tool, was used 
to track multiple body parts of the mouse during behaviour50. The 
tracking is used to estimate position, heading direction, speed and 
other behavioural features.

Identification of cell types
To identify each cell type (reward, reward-approach and screen cells), 
the averaged neuronal response of each cell to each of the three fea-
tures was calculated. Averaged neuronal activity at reward: average 
deconvolved traces during the reward consumption period. Averaged 
neuronal activity at reward approach: average deconvolved traces 
between the correct choice and the onset of the reward. Neuronal 
activity at the screen: average deconvolved traces at a window of  
[&150 ms, 150 ms] around screen pokes during choice period. The aver-
aged neuronal activity for each cell is compared to the distribution of 
averaged neuronal responses made by 1,000 circular shuffles. Cell 
types were identified as those whose neuronal activity exceeded the 
99th percentile of the corresponding shuffled distribution.

Tracking cells
To identify cells and track them across days, we first used the con-
strained non-negative matrix factorization (CNMFe) toolbox23,51 to 
simultaneously identify neuron locations, separate spatially overlap-
ping components and denoise and deconvolve spiking activity from 
the slow dynamics of the calcium indicator. Once the cells are identi-
fied, we use CellReg to track cells across sessions on the basis of their 
spatial footprints52.

Although the effectiveness of this method has been shown in previ-
ous studies53, we performed additional analyses to verify the reliability 
of our cell identification and cell tracking and to ensure that potential 
errors do not influence our results for cell registration and tracking 
procedures.

To do this, first, we made a detailed visualization of the tracked 
cells with a close look at their functional properties across sessions. 
Extended Data Fig. 9 shows the neuronal footprints of different cell 
types. Extended Data Fig. 9b shows the tracking of one reward cell 
across sessions. The green contour outlines the detected cell body, 
and the sessions in which CellReg52 has failed to track the cell are in red. 

This analysis provides visual proof of the reliable tracking of cells across 
days, with their tuning properties being preserved around the reward 
onset. Extended Data Fig. 9biii shows the response of the neurons across 
sessions as presented in the main manuscript. To assess the impact of 
potential tracking errors, we introduced controlled imperfections: 
in Extended Data Fig. 9biv, we artificially replaced each tracked cell 
with a randomly selected nearby neuron (within five cell diameters). 
As shown, both the consistent response pattern and the structured 
backward shifting seen in Extended Data Fig. 9biii disappeared, sup-
porting the idea that these effects rely on accurate cell identification. 
We test this null hypothesis more systematically in the next analysis. For 
further illustration, Extended Data Fig. 9c presents a second example 
neuron, showing similarly reliable tracking and reward-related tuning 
across sessions.

Furthermore, we tested the robustness of our results against a null 
hypothesis to assess how potential misalignment or inaccuracies in cell 
registration across days might affect the backward shifting of reward-cell 
activity. To simulate registration errors, we randomly selected a propor-
tion of sessions for each tracked reward cell. We replaced the identified 
cell for each of those sessions with a randomly selected nearby neuron 
(within five cell diameters). This process introduces a controlled mis-
alignment in cell registration. For each reward cell with the new modified 
tracking, we computed the average reward response of the cell across 
sessions and correlated the timing of peak activity with the session 
number. Similar to the analysis in the main text of the paper, a negative 
correlation indicates a backward shift in response timing relative to 
the reward onset. If the observed backward shift is a genuine effect, we 
expect this correlation to weaken as the proportion of misaligned ses-
sions increases. We systematically varied the percentage of misaligned 
sessions from 0% (true data with no misalignment) to 100% (complete 
misalignment across all sessions) (Extended Data Fig. 9). The analysis 
was performed for all tracked reward cells and also for only backward-
shifting reward cells. Both groups showed a substantial decrease in the 
absolute value of the negative correlation as we increased the level of 
misalignment. This result supports the idea that the structured reor-
ganization of reward cells relies on accurate cell identification.

Across 6 mice (the tracking quality for mouse 2 was poor, so it was 
excluded from the analysis), we successfully tracked a total of 3,165 
neurons, defined as cells that were tracked for at least 5 sessions. To 
ensure data quality, we excluded any sessions in which a cell’s activ-
ity variance was below the 50th percentile of the overall distribution 
(calculated across all cells and sessions). After applying this filtering 
criterion, we retained 1,814 neurons with sufficiently high variance in 
activity traces across all tracked sessions. These cells form the basis 
for the broader functional analyses presented in the main text and in 
Extended Data Figs. 10 and 11. Out of the 1,814 cells that passed our 
quality and tracking criteria, we identified 228 reward cells (12.6%), 225 
screen cells (12.4%) and 53 reward-approach cells (2.9%). The remain-
ing 1,308 cells (72.1%) did not meet the classification criteria for any 
of these 3 functional groups, and we refer to them as non-classified 
cells. More analysis on the reliability of our cell tracking is presented 
in Extended Data Fig. 9.

Naive Bayes spatial decoding
To decode the positions of mice from calcium traces within each ses-
sion, we divided the spatially binned position (using spatial bins of 1 cm 
along each of the axes) and our deconvolved calcium traces into fivefold 
splits. The binned positions were converted into a one-hot vector. 
Using the Gaussian Naive Bayes method from the scikit-learn Python 
library, we predicted positions on the withheld data using maximum 
likelihood estimation, as follows:
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where xi corresponds to the predicted position at i and y to the respec-
tive calcium traces. We assumed a flat prior (equal likelihood at all 
positions) and the scikit-learn default σ value of 1 % 10&9. The decoded 
position is assigned to the bin with the highest probability. The decod-
ing error was then estimated as the Euclidean distance between 
the mouse’s predicted and actual spatial bin position on withheld  
data.

CEBRA embedding
CEBRA is an algorithm that optimizes neural networks that map neural 
activity onto an embedding space26. This algorithm uses contrastive 
learning54 and a generalized InfoNCE loss function26 to learn repre-
sentations, where similar data points are pulled closer together and 
dissimilar data points are pushed apart within the embedding space. 
CEBRA has three different modes: CEBRA-Time (fully unsupervised or 
self-supervised), CEBRA-Behaviour (supervised) and CEBRA-Hybrid.

In our study, we used CEBRA-Time, so our input data will be unla-
belled and there will be no behavioural assumptions that influence 
neuronal activity. CEBRA embedding is used to project the deconvolved 
neuronal traces into a 32-dimensional latent space26. We set all param-
eters as default and used the same set of parameters across all sessions.

MI content of task features
CEBRA embedding is used to project the deconvolved neuronal traces 
into a 32-dimensional latent space26. The feature of interest (screen, 
reward approach or reward) was presented as a binary vector in which 
for each frame, if the mouse is in that condition it is 1; otherwise it is 0. 
A fivefold cross-validation is implemented in which for each fold one 
fold of the data is held out, and a scikit-learn-based linear decoder is 
trained on the latent presentation to decode the class of the binary 
target. The MI55,56 (using sciki-learn) between the predicted and the 
actual target for the held-out data is calculated. The averaged MI across 
five folds is considered the MI for each recording session. MI measures 
the dependency between two variables. It is equal to zero if and only if 
two random variables are independent, and higher values mean higher 
dependency. MI between two discrete variables (as in our case) X and 
Y can be calculated as follows:

∑X Y p i j
p i j

p i p j
MI( , ) = ( , )log

( , )
( ) ( )

,
i j x y,

where i covers the values in X and j covers the values in Y. p(i,j) is the 
joint distribution of the two variables X and Y. px(i) is the distribution 
function of X and py(j) is the distribution function of Y.

Linear modelling of information content
To compute the contribution of each feature (session number and 
mouse performance) in the evolution of hippocampal representation, 
we used a MATLAB function, fitlm, to model each of the measures of 
interest denoted by Y, by session number and performance. The con-
tribution of each of the features is measured by their contribution to 
the explained variance of Y:

Session number = varfull & varperformance

Performance = varfull & varsession

Session number and performance = varfull & varsession & varperformance

varsession: model’s explained variance when Y is modelled only by  
session number.

varperformance: model’s explained variance when Y is modelled only by 
performance.

varfull: model’s explained variance when Y is modelled by both session 
number and performance.

Temporal shifting score
We defined a temporal shifting score by comparing each cell’s true 
correlation between peak activity timing and session number to 

a shuffled distribution of correlations, providing a standardized  
measure of temporal shift.

µ
σ

Temporal shifting score =
corr &

,true shuffle

shuffle

where corrtrue is the observed correlation coefficient between session 
number and the timing of peak activity, and µshuffle and σshuffle are the 
mean and standard deviation of the correlation values obtained from 
a shuffled distribution. The shuffled distribution was generated by 
randomly permuting session numbers 1,000 times.

Amplitude change score
To quantify changes in response amplitude, we defined an amplitude 
change score using the same approach as for the temporal shifting 
score, except that we correlated session number with the peak activity 
amplitude of each neuron instead of its timing.

µ
σ

Amplitude change score =
corr &

,true shuffle

shuffle

where corrtrue is the observed correlation coefficient between session 
number and the response amplitude, and µshuffle and σshuffle are the mean 
and standard deviation of the correlation values obtained from a shuf-
fled distribution. The shuffled distribution was generated by randomly 
permuting session numbers 1,000 times.

Identification of backward- and forward-shifting cells
Within-session averaged calcium traces were calculated for each of the 
cells. The correlation between the session number and the time of peak 
activity was calculated. A shuffled distribution was calculated by cor-
relating the time of peak activities and the shuffled session numbers. 
A cell was identified as a backward-shifting cell if its correlation was 
less than the 5th percentile of the shuffled distribution. Similarly, a 
cell was identified as a forward-shifting cell if its correlation was more 
than the 95th percentile of the shuffled distribution. This criterion sets 
the chance level as 5%.

Identification of declining and inclining cells
Similar to backward- and forward-shifting cells, here, within-session 
averaged calcium traces were calculated for each of the cells. The cor-
relation between the session number and the amplitude of peak activity 
of raw calcium traces was calculated. A shuffled distribution was calcu-
lated by correlating the amplitude and the shuffled session numbers.  
A cell was identified as a declining cell if its correlation was less than the 
5th percentile of the shuffled distribution. Similarly, a cell was identified 
as an inclining cell if its correlation was more than the 95th percentile 
of the shuffled distribution. This criterion sets the chance level as 5%.

Rate maps
To calculate the rate map for each neuron, we binned the x and y axis 
each into 30 bins. The rate value assigned to each bin was simply calcu-
lated by the sum of neuronal activity (deconvolved traces) normalized 
by the time the mouse spent in that bin. For visualization, we used a 
Gaussian filter of size 5 % 5 bins and σ = 1 bin.

Identification of place cells
We computed the spatial information of all cells using the unsmoothed- 
event rate map of each cell, as previously described57.
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where pi is the probability of the mouse being in the ith bin (time spent 
in ith bin/total running time); ri is the Ca2+ event rate in the ith bin; and 



r  is the overall Ca2+ event rate. We then performed 1,000 distinct shuf-
fles of mouse locations during Ca2+ events and calculated the spatial 
information for each shuffle. Cells with spatial information higher 
than that of 99% percentile of their shuffles were identified as place 
cells.

Box-plot statistics
Box plots were generated using the seaborn.boxplot function. Each 
box represents the interquartile range (IQR), defined by the 25th per-
centile (Q1) and 75th percentile (Q3), with a horizontal line indicat-
ing the median. The whiskers extend to the most extreme data points 
within 1.5 % IQR from the quartiles. Data points outside this range are 
considered outliers and are shown as individual markers. This visuali-
zation provides a summary of the data distribution, including central 
tendency, spread and outlier values for each group or condition.

Measuring the size of the place fields
After identifying place cells and determining their rate maps, we 
masked these rate maps by setting all bins with values below the 90th 
percentile of values across all bins to zero. This operation creates islands 
of non-zeros surrounded by bins of zero value. We used the MATLAB 
function bwconncomp to detect these islands and used regionprops to 
calculate the area of each of these islands. The island with the maximum 
area was used to calculate the place-field size. The size of the place field 
was then calculated as:

Characteristic size of place field = Place field area .

Classification decoding analysis
A linear support vector machine classifier from MATLAB (fitcecoc) 
was used to decode contextual information in the task. For example, 
we want to decode the correctness of the trial at different moments of 
the task. Population vectors of deconvolved calcium traces were used 
to train and test the classifier. Given the limited number of samples, 
we used a leave-one-out approach by training our classifier on all 
samples except one and testing it on the excluded sample, repeating 
this process for each sample point. In each iteration, we ensured that 
the training dataset contained an equal number of samples from each 
class by randomly downsampling the class with a larger number of 
samples. For each decoding, we repeated the process five times and 
averaged the decoding accuracy across these five iterations. The 
classifier’s decoding performance was compared to the accuracy 
obtained from shuffled interaction, in which the class labels were 
randomly shuffled.

Reward over-representation score
To measure the reward over-representation score within each session, 
we first generated the spatial rate map for all cells. We identified the 
location of peak activity for each rate map, detecting the spatial bin with 
the highest firing rate for all cells. A density plot was then generated to 
represent the density of peaks in each spatial bin. This matrix provides 
a representation of each spatial bin. The reward over-representation 
was calculated as the average representation of the 10% of spatial bins 
closest to the reward port, normalized by the average representation 
across all spatial bins. In this context, a score of 1 indicates an even dis-
tribution of reward representation compared to the baseline, whereas 
a value greater than 1 signifies an over-representation of spatial bins 
near the reward port.

Statistical analysis
For visualization, we used error bars (or shaded areas for line plots) 
to show s.e.m. To compare two distributions, we used the two-sample 
Kolmogorov–Smirnov test, through the ‘kstest2’ command in MATLAB. 
For comparisons of a distribution against zero, we used the Wilcoxon 

signed-rank test, implemented using MATLAB’s ‘signrank’ command. 
Significance levels for all tests were set at *P < 0.05, **P < 0.01 and 
***P < 0.001.

Simulations for the TD-error-modulated place-cell model
Anatomical relevance. The model’s architecture is motivated by 
hippocampal–striatal–VTA circuitry, in which projections from the 
hippocampus to the ventral striatum indirectly regulate VTA dopa-
mine activity36,58–61. The ventral striatum encodes value ramps and 
VTA encodes RPE-like signals1,28,59. Dopaminergic feedback from the 
VTA to both the hippocampus and the striatum modulates plasticity 
for learning1,36,62. This circuit organization motivates a feed-forward 
structure in which place cells drive RPE computation, and a feedback 
structure in which RPE signals modulate plasticity underlying both 
value computation40,63,64 and place-cell spatial selectivity11.

Abstracted navigation task. We modelled navigation as a Markov 
decision process with 10 discrete states (state 0 to state 9) on a 1D track. 
State transitions were deterministic, with the agent receiving reward 
R = 1 by being at state 7 and choosing the action right to reach terminal 
state 8. After this, the trial ended immediately, and a new trial began 
with the agent starting at state 1. The state space had absorbing bounda-
ries (no circular topology) so that the agent could not reach state 0 from 
taking a step from state 9. The results were robust with 5 or 15 states.

Neural representation. Following a previous study11, each place cell’s 
spatial selectivity φi is modelled as a Gaussian radial basis function:
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where st is the current state; λi is each place cell’s peak activity location, 
which was initialized uniformly across states 0 to 9; and σ = 0.5 is the 
spread of each place cell. The agent estimates the value of a location 
using a linear readout of N = 1,000 place cells:
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using the vector wv. Increasing or decreasing the number of place cells 
N did not significantly change the dynamics of place-cell peak reorgani-
zation as the agent is initialized in a rich-feature learning regime65,66 
instead of a lazy-feature learning regime11.

Learning algorithm. We assume that the central objective for which 
animals are optimizing is reward maximization11. However, we first 
consider the simplified case of value estimation, in which the agent 
has an optimal policy π*, and the objective for the agent is to learn to 
estimate the value of the state given a policy. This simplification is 
to aid our understanding of the intuition and visualize how the TD 
error learning signal directly modulates each place cell’s peak shifts. 
Hence, the value estimation objective is to minimize the loss function, 
described by the TD error:
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starting with a commonly used reward discount factor (γ = 0.95). Chang-
ing the discount factor influences the backward-shifting dynamics. We 
optimize only the critic’s weights (wv) and each place cell’s centre of 
mass (λ) to study how this minimization influences peak activity. This 
results in the critic’s weights being updated by:
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where * = 0.1N. Using chain rule, each place-cell centre is updated 
according to:
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to minimize the loss function (see Supplementary Information for 
derivation). We visualized the value estimation objective in the main 
text to understand the intuition of how the TD error modulates each 
place cell’s peak shifts. We also investigated how policy learning for 
reward maximization (see model details in Supplementary Informa-
tion) influences place-cell shifts (Extended Data Fig. 15), which more 
closely replicates the objective of animals and the stochastic shifting 
dynamics that were observed in the experimental results.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The complete dataset for all experiments is available at McGill University 
Dataverse (https://doi.org/10.5683/SP3/877CGZ). The dataset should 
not be used for republication without prior consent from the authors.

Code availability
All source codes used in the current study are available on request to 
the corresponding authors.
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